
Pants Documentation
Release 1.0.1

Christopher Davis

Nov 13, 2017

Contents

1 Documentation 3
1.1 User Guide . 3
1.2 Core . 7
1.3 HTTP & Web . 18
1.4 Contributions . 55

Python Module Index 63

i

ii

Pants Documentation, Release 1.0.1

Pants is a lightweight framework for writing asynchronous network applications in Python. Pants is simple, fast and
elegant.

Pants is available under the Apache License, Version 2.0

An incomplete feature list:

• Single-threaded, asynchronous, callback-oriented.

• TCP networking - clients and servers!

• IPv4, IPv6 and UNIX socket families.

• SSL/TLS support for all that security stuff.

• Basic scheduling and timers.

• A speedy HTTP server with a handy WebSockets implementation.

• A simple web framework and support for WSGI.

And it’s all so, so easy to use. Check it out:

from pants import Engine, Server, Stream

class Echo(Stream):
def on_read(self, data):

self.write(data)

Server(Echo).listen(4040)
Engine.instance().start()

Here’s a web example for good measure:

from pants.web import Application

app = Application()

@app.route('/')
def hello(request):

return "Hello, World!"

app.run()

And here’s how you get Pants:

pip install pants

Want to get started? There’s plenty to do:

• Fork ecdavis/pants on GitHub.

• Join the IRC channel, #pantspowered on Freenode.

• Read this documentation!

Contents 1

http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/ecdavis/pants
http://webchat.freenode.net/?channels=pantspowered

Pants Documentation, Release 1.0.1

2 Contents

CHAPTER 1

Documentation

1.1 User Guide

Pants is a network programming framework for Python. It is simple, fast and elegant. Pants provides the programmer
with the basic tools they need to write responsive, high-throughput and highly-concurrent network applications. At its
core, Pants consists of three things:

• Engines: efficient, asynchronous event loops.

• Channels: non-blocking wrappers around socket objects.

• Timers: non-blocking helpers for delayed execution of code.

1.1.1 Overview

All Pants applications share a similar architecture. Channels and timers are added to an engine. The engine runs an
event loop and manages timer scheduling. As events are raised on sockets, the engine dispatches those events (read,
write, close, etc.) to the relevant channel to be handled by user code. Timers are executed and possibly rescheduled
by the engine as they expire. Writing a Pants application consists of defining your event-handling logic on custom
channel classes, scheduling timers to be executed and starting the event loop. Pants makes writing efficient network
applications simple through the use of elegant abstractions.

Pants is an asynchronous, callback-oriented framework. Being asynchronous, it is important that your code does not
block the main process. Blocking code prevents Pants from efficiently polling for socket events, and has a significant,
negative effect on performance. To eliminate the need for blocking code, Pants uses a callback-oriented design.
Blocking operations like reading and writing data to a socket are performed in the background. When these operations
complete, callback methods are invoked to notify user code. To get a better example of how Pants applications work,
take a look at a few examples or read through the tutorial.

1.1.2 Getting Started

Getting started with Pants is easy. Pants can be installed either from the Python Package Index or from source. Pants
requires Python version 2.6 or 2.7.

3

http://github.com/ecdavis/pants/tree/master/examples/
http://pypi.python.org/pypi/pants
http://python.org/

Pants Documentation, Release 1.0.1

You can install Pants using your favourite Python package manager:

pip install pants

Or from source:

wget https://github.com/ecdavis/pants/tarball/pants-1.0.0-beta.3
tar xvfz pants-1.0.0-beta.3.tar.gz
cd pants-1.0.0-beta.3
python setup.py install

Using the development version

Using the development version of Pants will give you access to the latest features as well as the latest bugs. If you’re
interested in contributing code to Pants, this is the version you should work with. Otherwise, it’s suggested that you
stick to a release version. You can clone the repository like so:

git clone git://github.com/ecdavis/pants

Many people also find it useful to add their repository directory to Python’s path, or to create a symbolic link from the
repository directory to Python’s site-packages directory to allow them to import Pants in any Python script.

1.1.3 Tutorial

What follows is a simple tutorial designed to introduce you to the core parts of Pants’ API and demonstrate how to
write simple Pants applications. This tutorial is by no means an exhaustive tour of Pants’ many features, but should
serve as an excellent starting point for someone new to the framework or to asynchronous network programming in
general.

Writing a simple server

We’re going to begin by writing an echo server. This is like the “Hello, World!” of networking frameworks, but it’s
nonetheless a good place to start. Create a file containing the following code:

from pants import Engine, Server, Stream

class Echo(Stream):
def on_read(self, data):

self.write(data)

server = Server(ConnectionClass=Echo)
server.listen(4040)
Engine.instance().start()

Now run it and, in another terminal, connect to the server using telnet:

telnet localhost 4040

Try entering some data and you’ll find that it gets echoed right back to you. To get a better idea of what’s happening
in this application, we’ll run through the code line by line:

class Echo(Stream):
def on_read(self, data):

self.write(data)

4 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

We begin by defining a class, Echo, which subclasses Pants’ Stream class. Instances of Stream and its subclasses
are what Pants calls ‘channels.’ They represent connections from the local host to a remote host or vice-versa. Channels
are basically just wrappers around socket objects that deal with all the nitty-gritty, low-level stuff so that you don’t
have to. You implement most of your application’s logic by defining callback methods on your channel classes.
on_read is one such method. As the name suggests, on_read will get called any time data is read from the
channel. The incoming data is passed to the callback for use by your application. In this case, we’ve chosen to
immediately write it back to the channel, thereby implementing the echo protocol.

Having defined our application logic, we now need to get the server up and running:

server = Server(ConnectionClass=Echo)
server.listen(4040)
Engine.instance().start()

We create a new instance of Pants’ Server class and pass it our Stream subclass, Echo. Server instances are
channels which represent sockets that are listening for new connections to the local host. When a new connection is
made, the Server will automatically wrap that connection with an instance of its ConnectionClass. In this case,
new connections will be wrapped with instances of our Echo class.

After creating the server, we tell it to listen for new connections on port 4040 and then we start the global engine. All
Pants applications have an engine at their core - it’s responsible for running a powerful event loop that listens for new
events on sockets and dispatches those events to the appropriate channels.

We’ve only written 7 lines of code, but we’ve already covered a great deal of Pants’ core functionality. Before moving
on, try messing around with the code a little bit and see what happens:

• Delete the ConnectionClass parameter in the Server constructor.

• Comment out the listen() call.

• Comment out the start() call.

Kicking it up a notch

Now that we’ve covered the basics we can move on to something a little more interesting.

from pants import Engine, Server, Stream

class BlockEcho(Stream):
def on_connect(self):

self.read_delimiter = 8

def on_read(self, block):
self.write(block + '\r\n')

server = Server(ConnectionClass=BlockEcho)
server.listen(4040)
Engine.instance().start()

The on_read method is basically the same as before, we’ve just added a newline to the end of the data before writing
it. We’ve also added a new event handler method: on_connect. As the name suggests, this gets called when the
channel’s connection is first established. In on_connect we set the value of the channel’s read_delimiter
attribute, and this is where things get neat. The read_delimiter changes the way Pants passes data to on_read.
Instead of being passed on as soon as it arrives, data is internally buffered and passed to on_read in blocks of 8
bytes. See what happens when you run this application and connect to it as you did before. It’s a simple idea, but the
read_delimiter is one of Pants’ most powerful features.

The read_delimiter isn’t limited to being a number of bytes, either. Here are some experiments for you to try:

1.1. User Guide 5

https://docs.python.org/2.7/library/socket.html#socket.socket

Pants Documentation, Release 1.0.1

• Set the read_delimiter to a short string.

• Set the read_delimiter to a compiled regex object.

• Set the read_delimiter to None.

Taking it to another level

Up until now we’ve been using Pants’ regular Server class and it’s suited our needs perfectly. There are times,
however, where you may need to define custom behaviour on your server channels. This is achieved by subclassing
Server:

class EchoLineToAllServer(Server):
ConnectionClass = EchoLineToAll

def write_to_all(self, data):
for channel in self.channels.itervalues():

if channel.connected:
channel.write(data)

All very straight-forward. We defined a new method on the server that writes data to all connected channels. We also
overrode the default ConnectionClass attribute, meaning that we’ll no longer need to pass in our connection class
to the constructor. Starting the server now looks like this:

EchoLineToAllServer().listen(4040)
Engine.instance().start()

For the sake of completeness, here’s the EchoLineToAll connection class used by the above server:

class EchoLineToAll(Stream):
def on_connect(self):

self.read_delimiter = '\r\n'
self.server.write_to_all("Connected: %s\r\n" % self.remote_address[0])

def on_read(self, line):
self.server.write_to_all("%s: %s\r\n" % (self.remote_address[0], line))

def on_close(self):
self.server.write_to_all("Disconnected: %s\r\n" % self.remote_address[0])

As you can see, channels retain a reference to the server that they belong to. In this case, we’re also using the
remote_address property as a channel-specific identifier.

That’s it for the basic tutorial, but there’s plenty more you can do here:

• Experiment with different read_delimiter values to change the way connections process data. You might
try implementing a packet-oriented protocol.

• Write a client for your server using Pants. You basically know how already, just take a look at connect() and
you’ll be good to go.

• We can’t have people communicating through unencrypted channels like this. Secure your chat server using
Pants’ SSL support. Take a look at startSSL() to get started.

6 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

1.2 Core

1.2.1 pants

The core Pants classes and objects.

Exports the global engine, pants.stream.Stream and pants.server.Server.

1.2.2 pants.engine

Asynchronous event processing and timer scheduling.

Pants applications are powered by instances of the Engine class. An Engine instance keeps track of active channels,
continuously checks them for new events and raises those events on the channel when they occur. The Engine class
also provides the timer functionality which allows callable objects to be invoked after some delay without blocking
the process.

Engines

Pants’ engines are very simple to use. After you have finished initializing your application, simply call start() to
enter the blocking event loop. stop() may be called at any time to cause a graceful exit from the event loop. If your
application has a pre-existing event loop you can call the poll() method on each iteration of that loop rather than
using start() and stop(). Ideally, poll() should be called many times each second to ensure that events are
processed efficiently and timers are executed on schedule.

The global engine instance is returned by the instance() classmethod. It is not required that you use the global
engine instance, but it is strongly recommended. By default, new channels are automatically added to the global
engine when they are created. Channels can be added to a specific engine by passing the engine instance as a keyword
argument to the channel’s constructor. If a Server is added to a non-default engine, any connections it accepts will
also be added to that engine.

Timers

In addition to managing channels, Pants’ engines can also schedule timers. Timers are callable objects that get invoked
at some point in the future. Pants has four types of timers: callbacks, loops, deferreds and cycles. Callbacks and loops
are executed each time poll() is called - callbacks are executed once while loops are executed repeatedly. Deferreds
and cycles are executed after a delay specified in seconds - deferreds are executed once while cycles are executed
repeatedly.

Engine has methods for creating each of the four types of timers: callback(), loop(), defer() and
cycle(). Each of these methods is passed a callable to execute as well as any number of positional and keyword
arguments:

engine.callback(my_callable, 1, 2, foo='bar')

The timer methods all return a callable object which can be used to cancel the execution of the timer:

cancel_cycle = engine.cycle(10.0, my_callable)
cancel_cycle()

Any object references passed to a timer method will be retained in memory until the timer has finished executing or
is cancelled. Be aware of this when writing code, as it may cause unexpected behaviors should you fail to take these
references into account. Timers rely on their engine for scheduling and execution. For best results, you should either
schedule timers while your engine is running or start your engine immediately after scheduling your timers.

1.2. Core 7

Pants Documentation, Release 1.0.1

Pollers

By default, Pants’ engines support the epoll, kqueue and select polling methods. The most appropriate polling
method is selected based on the platform on which Pants is running. Advanced users may wish to use a different
polling method. This can be done by defining a custom poller class and passing an instance of it to the Engine
constructor. Interested users should review the source code for an understanding of how these classes are defined and
used.

Engine

class pants.engine.Engine(poller=None)
The asynchronous engine class.

An engine object is responsible for passing I/O events to active channels and running timers asynchronously.
Depending on OS support, the engine will use either the epoll(), kqueue() or select() system call to
detect events on active channels. It is possible to force the engine to use a particular polling method, but this is
not recommended.

Most applications will use the global engine object, which can be accessed using instance(), however it is
also possible to create and use multiple instances of Engine in your application.

An engine can either provide the main loop for your application (see start() and stop()), or its function-
ality can be integrated into a pre-existing main loop (see poll()).

Argument Description
poller Optional. A specific polling object for the engine to use.

callback(function, *args, **kwargs)
Schedule a callback.

A callback is a function (or other callable) that is executed the next time poll() is called - in other words,
on the next iteration of the main loop.

Returns a callable which can be used to cancel the callback.

Argument Description
function The callable to be executed when the callback is run.
args The positional arguments to be passed to the callable.
kwargs The keyword arguments to be passed to the callable.

cycle(interval, function, *args, **kwargs)
Schedule a cycle.

A cycle is a deferred that is continuously rescheduled. It will be run at regular intervals.

Returns a callable which can be used to cancel the cycle.

Argument Description
interval The interval, in seconds, at which the cycle should be run.
function The callable to be executed when the cycle is run.
args The positional arguments to be passed to the callable.
kwargs The keyword arguments to be passed to the callable.

defer(delay, function, *args, **kwargs)
Schedule a deferred.

A deferred is a function (or other callable) that is executed after a certain amount of time has passed.

Returns a callable which can be used to cancel the deferred.

8 Chapter 1. Documentation

https://docs.python.org/2.7/library/select.html#select.epoll
https://docs.python.org/2.7/library/select.html#select.kqueue
https://docs.python.org/2.7/library/select.html#select.select
https://docs.python.org/2.7/library/select.html#select.epoll
https://docs.python.org/2.7/library/select.html#select.kqueue
https://docs.python.org/2.7/library/select.html#select.select

Pants Documentation, Release 1.0.1

Argument Description
delay The delay, in seconds, after which the deferred should be run.
function The callable to be executed when the deferred is run.
args The positional arguments to be passed to the callable.
kwargs The keyword arguments to be passed to the callable.

classmethod instance()
Returns the global engine object.

loop(function, *args, **kwargs)
Schedule a loop.

A loop is a callback that is continuously rescheduled. It will be executed every time poll() is called - in
other words, on each iteraton of the main loop.

Returns a callable which can be used to cancel the loop.

Argument Description
function The callable to be executed when the loop is run.
args The positional arguments to be passed to the callable.
kwargs The keyword arguments to be passed to the callable.

poll(poll_timeout)
Poll the engine.

Updates timers and processes I/O events on all active channels. If your application has a pre-existing main
loop, call poll() on each iteration of that loop, otherwise, see start().

Argument Description
poll_timeout The timeout to be passed to the polling object.

start(poll_timeout=0.2)
Start the engine.

Initialises and continuously polls the engine until either stop() is called or an uncaught Exception
is raised. start() should be called after your asynchronous application has been fully initialised. For
applications with a pre-existing main loop, see poll().

Argument Description
poll_timeout Optional. The timeout to pass to poll().

stop()
Stop the engine.

If start() has been called, calling stop() will cause the engine to cease polling and shut down on the
next iteration of the main loop.

1.2.3 pants.stream

Streaming (TCP) connection implementation.

Streams are one of the two main types of channels in Pants - the other being servers. Streams represent connections
between two endpoints. They may be used for both client and server applications.

Streams

To write a Pants application you will first need to subclass Stream. Your Stream subclass will contain the majority
of your networking code in the form of event handlers. Event handlers are methods beginning with on_ and can be
safely overridden by your subclass.

1.2. Core 9

Pants Documentation, Release 1.0.1

Connecting

Before a Stream instance can be used, it must first be connected to a remote host. If you are writing a server
application, all new Stream instance created by your Server will be connected. Once they are created by the
Server, on_connect() will be called and your Engine will begin dispatching events to your Stream instance.

If you are writing a client application, you must first instantiate your Stream subclass and then use the connect()
method to connect the channel to a remote host. Once the connection has been successfully established, the
on_connect() event handler will be called and your Stream instance will start receiving events. Bear in mind
that the connection will not be established until the Engine is running. As such, a common pattern when writing
client applications with Pants is to call connect(), start the engine and then put all other initialization code in
on_connect().

Writing Data

Once your Stream instance is connected to a remote host, you can begin to write data to the channel. Use
write() to write string data to the channel, write_file() to efficiently write data from an open file and
write_packed() to write packed binary data. As you call these methods, Pants internally buffers your outgo-
ing data. Once the buffer is completely empty, on_write() will be called. Be aware that if you continuously write
data to your Stream that on_write() may not be called very frequently. If you wish to bypass the internal buffer-
ing and attempt to write your data immediately you can use the flush options present in the three write methods or
call the flush() method yourself. This can help to improve your application’s responsiveness but calling it exces-
sively can reduce overall performance. Generally speaking, it is useful when you know with certainty that you have
finished writing one discrete chunk of data (i.e. an HTTP response).

Reading Data

A connected Stream instance will automatically receive all incoming data from the remote host. By de-
fault, all incoming data is immediately passed to the on_read() event handler for your code to process. The
read_delimiter attribute can be used to control this behaviour by causing Pants to buffer incoming data inter-
nally, only forwarding it to on_read() when a particular condition is met. If the condition is never met, the internal
buffer will eventually exceed the allowed buffer_size and the on_overflow_error() handler method will
be called. read_delimiter is extremely powerful when used effectively.

Closing

To close a Stream instance, simply call the close() method. Once a stream has been closed it should not be
reused.

Handling Errors

Despite best efforts, errors will occasionally occur in asynchronous code. Pants handles these errors by passing the
resulting exception object to one of a number of error handler methods. They are: on_connect_error(),
on_overflow_error() and on_error(). Additionally, on_ssl_handshake_error() and
on_ssl_error() exist to handle SSL-specific errors.

SSL

Pants streams have SSL support. If you are writing a server application, use Server.startSSL to enable SSL on
your server. Each Stream created by your server from that point forward will be SSL-enabled. If you are writing

10 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

a client application, call Stream.startSSL before calling connect(). Alternatively, you can pass a dictionary
of SSL options to the Stream constructor which will then enable SSL on the instance. When SSL is enabled on a
Stream, an SSL handshake occurs between the local and remote ends of the connection. Once the SSL handshake is
complete, on_ssl_handshake() will be called. If it fails, on_ssl_handshake_error() will be called.

If you are writing an SSL-enabled application you should read the entirety of Python’s ssl documentation. Pants
does not override any of Python’s SSL defaults unless clearly stated in this documentation.

Stream

class pants.stream.Stream(**kwargs)
The stream-oriented connection channel.

A Stream instance represents either a local connection to a remote server or a remote connection to a local
server over a streaming, connection-oriented protocol such as TCP.

Keyword
Argument

Description

engine Optional. The engine to which the channel should be added. Defaults to the global engine.
socket Optional. A pre-existing socket to wrap. This can be a regular socket or an SSLSocket.

If a socket is not provided, a new socket will be created for the channel when required.
ssl_options Optional. If provided, startSSL() will be called with these options once the stream is

ready. By default, SSL will not be enabled.

buffer_size
The maximum size, in bytes, of the internal buffer used for incoming data.

When buffering data it is important to ensure that inordinate amounts of memory are not used. Setting the
buffer size to a sensible value can prevent coding errors or malicious use from causing your application to
consume increasingly large amounts of memory. By default, a maximum of 64kb of data will be stored.

The buffer size is mainly relevant when using a string value for the read_delimiter. Because you
cannot guarantee that the string will appear, having an upper limit on the size of the data is appropriate.

If the read delimiter is set to a number larger than the buffer size, the buffer size will be increased to
accommodate the read delimiter.

When the internal buffer’s size exceeds the maximum allowed, the on_overflow_error() callback
will be invoked.

Attempting to set the buffer size to anything other than an integer or long will raise a TypeError.

close(flush=True)
Close the channel.

connect(address)
Connect the channel to a remote socket.

The given address is resolved and used by the channel to connect to the remote server. If an error
occurs at any stage in this process, on_connect_error() is called. When a connection is successfully
established, on_connect() is called.

Addresses can be represented in a number of different ways. A single string is treated as a UNIX address.
A single integer is treated as a port and converted to a 2-tuple of the form ('', port). A 2-tuple is
treated as an IPv4 address and a 4-tuple is treated as an IPv6 address. See the socket documentation for
further information on socket addresses.

If no socket exists on the channel, one will be created with a socket family appropriate for the given
address.

1.2. Core 11

https://docs.python.org/2.7/library/ssl.html#module-ssl
https://docs.python.org/2.7/library/socket.html#socket.socket
https://docs.python.org/2.7/library/socket.html#module-socket

Pants Documentation, Release 1.0.1

An error will occur during the connection if the given address is not of a valid format or of an inappropriate
format for the socket (e.g. if an IP address is given to a UNIX socket).

Calling connect() on a closed channel or a channel that is already connected will raise a
RuntimeError.

Returns the channel.

Arguments Description
address The remote address to connect to.

flush()
Attempt to immediately write any internally buffered data to the channel without waiting for a write event.

This method can be fairly expensive to call and should be used sparingly.

Calling flush() on a closed or disconnected channel will raise a RuntimeError.

local_address
The address of the channel on the local machine.

By default, this will be the value of socket.getsockname or None. It is possible for user code to
override the default behaviour and set the value of the property manually. In order to return the property
to its default behaviour, user code then has to delete the value. Example:

default behaviour
channel.local_address = custom_value
channel.local_address will return custom_value now
del channel.local_address
default behaviour

on_close()
Placeholder. Called after the channel has finished closing.

on_connect()
Placeholder. Called after the channel has connected to a remote socket.

on_connect_error(exception)
Placeholder. Called when the channel has failed to connect to a remote socket.

By default, logs the exception and closes the channel.

Argument Description
exception The exception that was raised.

on_error(exception)
Placeholder. Generic error handler for exceptions raised on the channel. Called when an error occurs and
no specific error-handling callback exists.

By default, logs the exception and closes the channel.

Argument Description
exception The exception that was raised.

on_overflow_error(exception)
Placeholder. Called when an internal buffer on the channel has exceeded its size limit.

By default, logs the exception and closes the channel.

Argument Description
exception The exception that was raised.

on_read(data)
Placeholder. Called when data is read from the channel.

12 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

Argument Description
data A chunk of data received from the socket.

on_ssl_error(exception)
Placeholder. Called when an error occurs in the underlying SSL implementation.

By default, logs the exception and closes the channel.

Argument Description
exception The exception that was raised.

on_ssl_handshake()
Placeholder. Called after the channel has finished its SSL handshake.

on_ssl_handshake_error(exception)
Placeholder. Called when an error occurs during the SSL handshake.

By default, logs the exception and closes the channel.

Argument Description
exception The exception that was raised.

on_write()
Placeholder. Called after the channel has finished writing data.

read_delimiter
The magical read delimiter which determines how incoming data is buffered by the stream.

As data is read from the socket, it is buffered internally by the stream before being passed to the
on_read() callback. The value of the read delimiter determines when the data is passed to the call-
back. Valid values are None, a byte string, an integer/long, a compiled regular expression, an instance of
struct.Struct, or an instance of netstruct.NetStruct.

When the read delimiter is None, data will be passed to on_read() immediately after it is read from
the socket. This is the default behaviour.

When the read delimiter is a byte string, data will be buffered internally until that string is encountered in
the incoming data. All data up to but excluding the read delimiter is then passed to on_read(). The
segment matching the read delimiter itself is discarded from the buffer.

When the read delimiter is an integer or a long, it is treated as the number of bytes to read before passing
the data to on_read().

When the read delimiter is a struct.Struct instance, the Struct’s size is fully buffered and the data
is unpacked using the Struct before its sent to on_read(). Unlike other types of read delimiters, this can
result in more than one argument being passed to on_read(), as in the following example:

import struct
from pants import Stream

class Example(Stream):
def on_connect(self):

self.read_delimiter = struct.Struct("!LLH")

def on_read(self, packet_type, length, id):
pass

When the read delimiter is an instance of netstruct.NetStruct, the NetStruct’s minimum_size is
buffered and unpacked with the NetStruct, and additional data is buffered as necessary until the NetStruct
can be completely unpacked. Once ready, the data will be passed to on_read(). Using Struct and
NetStruct are very similar.

1.2. Core 13

https://docs.python.org/2.7/library/struct.html#struct.Struct
https://docs.python.org/2.7/library/struct.html#struct.Struct

Pants Documentation, Release 1.0.1

When the read delimiter is a compiled regular expression (re.RegexObject), there are two possible
behaviors that you may switch between by setting the value of regex_search. If regex_search
is True, as is the default, the delimiter’s search() method is used and, if a match is found, the string
before that match is passed to on_read(). The segment that was matched by the regular expression will
be discarded.

If regex_search is False, the delimiter’s match() method is used instead and, if a match is found,
the match object itself will be passed to on_read(), giving you access to the capture groups. Again, the
segment that was matched by the regular expression will be discarded from the buffer.

Attempting to set the read delimiter to any other value will raise a TypeError.

The effective use of the read delimiter can greatly simplify the implementation of certain protocols.

remote_address
The remote address to which the channel is connected.

By default, this will be the value of socket.getpeername or None. It is possible for user code to
override the default behaviour and set the value of the property manually. In order to return the property
to its default behaviour, user code then has to delete the value. Example:

default behaviour
channel.remote_address = custom_value
channel.remote_address will return custom_value now
del channel.remote_address
default behaviour

startSSL(ssl_options={})
Enable SSL on the channel and perform a handshake at the next opportunity.

SSL is only enabled on a channel once all currently pending data has been written. If a problem occurs
at this stage, on_ssl_error() is called. Once SSL has been enabled, the SSL handshake begins - this
typically takes some time and may fail, in which case on_ssl_handshake_error() will be called.
When the handshake is successfully completed, on_ssl_handshake() is called and the channel is
secure.

Typically, this method is called before connect(). In this case, on_ssl_handshake()will be called
before on_connect(). If startSSL() is called after connect(), the reverse is true.

It is possible, although unusual, to start SSL on a channel that is already connected and active. In this case,
as noted above, SSL will only be enabled and the handshake performed after all currently pending data has
been written.

The SSL options argument will be passed through to ssl.wrap_socket() as keyword arguments -
see the ssl documentation for further information. You will typically want to provide the keyfile,
certfile and ca_certs options. The do_handshake_on_connect option must be False, or
a ValueError will be raised.

Attempting to enable SSL on a closed channel or a channel that already has SSL enabled on it will raise a
RuntimeError.

Returns the channel.

Arguments Description
ssl_options Optional. Keyword arguments to pass to ssl.wrap_socket().

write(data, flush=False)
Write data to the channel.

Data will not be written immediately, but will be buffered internally until it can be sent without blocking
the process.

14 Chapter 1. Documentation

https://docs.python.org/2.7/library/re.html#re.RegexObject
https://docs.python.org/2.7/library/re.html#re.RegexObject.search
https://docs.python.org/2.7/library/re.html#re.RegexObject.match
https://docs.python.org/2.7/library/ssl.html#ssl.wrap_socket
https://docs.python.org/2.7/library/ssl.html#module-ssl
https://docs.python.org/2.7/library/ssl.html#ssl.wrap_socket

Pants Documentation, Release 1.0.1

Calling write() on a closed or disconnected channel will raise a RuntimeError.

Arguments Description
data A string of data to write to the channel.
flush Optional. If True, flush the internal write buffer. See flush() for details.

write_file(sfile, nbytes=0, offset=0, flush=False)
Write a file to the channel.

The file will not be written immediately, but will be buffered internally until it can be sent without blocking
the process.

Calling write_file() on a closed or disconnected channel will raise a RuntimeError.

Arguments Description
sfile A file object to write to the channel.
nbytes Optional. The number of bytes of the file to write. If 0, all bytes will be written.
offset Optional. The number of bytes to offset writing by.
flush Optional. If True, flush the internal write buffer. See flush() for details.

write_packed(*data, **kwargs)
Write packed binary data to the channel.

If the current read_delimiter is an instance of struct.Struct or netstruct.NetStruct
the format will be read from that Struct, otherwise you will need to provide a format.

Argu-
ment

Description

*data Any number of values to be passed through struct and written to the remote host.
flush Optional. If True, flush the internal write buffer. See flush() for details.
format Optional. A formatting string to pack the provided data with. If one isn’t provided, the

read delimiter will be used.

1.2.4 pants.server

Streaming (TCP) server implementation.

Servers are one of the two main types of channels in Pants - the other being streams. Servers listen for connections
to your application, accept those connections and allow you to handle them easily. Pants servers support SSL and
IPv6.

Servers

Writing Servers

You have two choices when writing a server application: either use Pants’ default Server class without modification
or subclass Server in order to implement custom behaviour.

Pants’ default Server class will wrap every new connection in an instance of a connection class which you provide
(see below). In most cases, this provides you with sufficient freedom to implement your application logic and has the
added benefit of simplicity. To use the default server, simply instantiate Server and pass your connection class to
the constructor.

If you need to implement custom server behaviour, you can subclass Server and define your connection class as a
class attribute:

1.2. Core 15

https://docs.python.org/2.7/library/struct.html#struct.Struct
https://docs.python.org/2.7/library/struct.html#module-struct

Pants Documentation, Release 1.0.1

class MyServer(pants.Server):
ConnectionClass = MyConnectionClass

It is recommended that you use the default Server class where possible and try to implement your application logic
in your connection class.

Connection Classes

A connection class is a subclass of Stream which a server will use to wrap each incoming connection. Every time
a new connection is made to the server, a new instance of your connection class will be created to handle it. You can
override the various event handler methods of Stream to implement your application’s logic.

Running Servers

Having defined your connection class and instantiated your server, you can start it listening for new connections with
the listen() method. This will bind the server to your chosen address and once the engine is started, the server
will begin accepting new connections. Once the server has started listening for connections it can be stopped using the
close() method. When close() is called, the default server implementation will close any connections that were
made to it which are still open.

SSL

Pants servers have SSL support. If you want to start an SSL-enabled server, call the startSSL() method before
calling the listen() method. When you call startSSL() you must provide a dictionary of SSL options as
detailed in the method documentation. It is also possible to pass the SSL options dictionary directly to the Server
constructor in order to enable SSL. Here is an example of how you might start an SSL-enabled server:

server = pants.Server(MyConnectionClass)
server.startSSL({

'certfile': '/home/user/certfile.pem',
'keyfile': '/home/user/keyfile.pem'
})

server.listen(('', 8080))

If you are writing an SSL-enabled application you should read the entirety of Python’s ssl documentation. Pants
does not override any of Python’s SSL defaults unless clearly stated in this documentation.

Server

class pants.server.Server(ConnectionClass=None, **kwargs)
A stream-oriented server channel.

A Server instance represents a local server capable of listening for connections from remote hosts over a
connection-oriented protocol such as TCP/IP.

Keyword
Argument

Description

engine Optional. The engine to which the channel should be added. Defaults to the global engine.
socket Optional. A pre-existing socket to wrap. This can be a regular socket or an SSLSocket.

If a socket is not provided, a new socket will be created for the channel when required.
ssl_options Optional. If provided, startSSL() will be called with these options once the server is

ready. By default, SSL will not be enabled.

16 Chapter 1. Documentation

https://docs.python.org/2.7/library/ssl.html#module-ssl
https://docs.python.org/2.7/library/socket.html#socket.socket

Pants Documentation, Release 1.0.1

close()
Close the channel.

The channel will be closed immediately and will cease to accept new connections. Any connections
accepted by this channel will remain open and will need to be closed separately. If this channel has an
IPv4 slave (see listen()) it will be closed.

Once closed, a channel cannot be re-opened.

listen(address, backlog=1024, slave=True)
Begin listening for connections made to the channel.

The given address is resolved, the channel is bound to the address and then begins listening for connec-
tions. Once the channel has begun listening, on_listen() will be called.

Addresses can be represented in a number of different ways. A single string is treated as a UNIX address.
A single integer is treated as a port and converted to a 2-tuple of the form ('', port). A 2-tuple is
treated as an IPv4 address and a 4-tuple is treated as an IPv6 address. See the socket documentation for
further information on socket addresses.

If no socket exists on the channel, one will be created with a socket family appropriate for the given
address.

An error will occur if the given address is not of a valid format or of an inappropriate format for the socket
(e.g. if an IP address is given to a UNIX socket).

Calling listen() on a closed channel or a channel that is already listening will raise a RuntimeError.

Returns the channel.

Argu-
ments

Description

address The local address to listen for connections on.
backlog Optional. The maximum size of the connection queue.
slave Optional. If True, this will cause a Server listening on IPv6 INADDR_ANY to create a

slave Server that listens on the IPv4 INADDR_ANY.

on_accept(socket, addr)
Called after the channel has accepted a new connection.

Create a new instance of ConnectionClass to wrap the socket and add it to the server.

Argument Description
sock The newly connected socket object.
addr The new socket’s address.

on_close()
Called after the channel has finished closing.

Close all active connections to the server.

on_error(exception)
Placeholder. Generic error handler for exceptions raised on the channel. Called when an error occurs and
no specific error-handling callback exists.

By default, logs the exception and closes the channel.

Argument Description
exception The exception that was raised.

on_listen()
Placeholder. Called when the channel begins listening for new connections or packets.

1.2. Core 17

https://docs.python.org/2.7/library/socket.html#module-socket

Pants Documentation, Release 1.0.1

on_ssl_wrap_error(sock, addr, exception)
Placeholder. Called when an error occurs while wrapping a new connection with an SSL context.

By default, logs the exception and closes the new connection.

Argument Description
sock The newly connected socket object.
addr The new socket’s address.
exception The exception that was raised.

startSSL(ssl_options={})
Enable SSL on the channel.

Enabling SSL on a server channel will cause any new connections accepted by the server to be automati-
cally wrapped in an SSL context before being passed to on_accept(). If an error occurs while a new
connection is being wrapped, on_ssl_wrap_error() is called.

SSL is enabled immediately. Typically, this method is called before listen(). If it is called afterwards,
any connections made in the meantime will not have been wrapped in SSL contexts.

The SSL options argument will be passed through to each invocation of ssl.wrap_socket() as key-
word arguments - see the ssl documentation for further information. You will typically want to provide
the keyfile, certfile and ca_certs options. The do_handshake_on_connect option must
be False and the server_side option must be true, or a ValueError will be raised.

Attempting to enable SSL on a closed channel or a channel that already has SSL enabled on it will raise a
RuntimeError.

Returns the channel.

Arguments Description
ssl_options Optional. Keyword arguments to pass to ssl.wrap_socket().

1.3 HTTP & Web

1.3.1 pants.http.server

pants.http.server implements a lean HTTP server on top of Pants with support for most of HTTP/1.1, includ-
ing persistent connections. The HTTP server supports secure connections, efficient transfer of files, and proxy headers.
Utilizing the power of Pants, it becomes easy to implement other protocols on top of HTTP such as WebSockets.

The Server

HTTPServer is a subclass of pants.server.Server that implements the HTTP/1.1 protocol via the class
HTTPConnection. Rather than specifying a custom ConnectionClass, you implement your behavior with a
request_handler. There will be more on request handlers below. For now, a brief example:

from pants.http import HTTPServer
from pants import Engine

def my_handler(request):
request.send_response("Hello World.")

server = HTTPServer(my_handler)
server.listen()
Engine.instance().start()

18 Chapter 1. Documentation

https://docs.python.org/2.7/library/ssl.html#ssl.wrap_socket
https://docs.python.org/2.7/library/ssl.html#module-ssl
https://docs.python.org/2.7/library/ssl.html#ssl.wrap_socket
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Pants Documentation, Release 1.0.1

In addition to specifying the request handler, there are a few other ways to configure HTTPServer.

Using HTTPServer Behind a Proxy

HTTPServer has support for a few special HTTP headers that can be set by proxy servers (notably
X-Forwarded-For and X-Forwarded-Proto) and it can use X-Sendfile headers when sending files to
allow the proxy server to take care of static file transmission.

When creating your HTTPServer instance, set xheaders to True to allow the server to automatically use the
headers X-Real-IP, X-Forwarded-For, and X-Forwarded-Proto if they exist to set the HTTPRequest‘s
remote_ip and scheme.

Sendfile is a bit more complex, with three separate variables for configuration. To enable the X-Sendfile header,
set sendfile to True when creating your HTTPServer instance. Alternatively, you may set it to a string to have
Pants use a string other than X-Sendfile for the header’s name.

HTTPServer’s sendfile_prefix allows you to set a prefix for the path written to the X-Sendfile header. This
is useful when using Pants behind nginx.

HTTPServer’s file_root allows you to specify a root directory from which static files should be located. This root
path will be stripped from the file paths before they’re written to the X-Sendfile header. If file_root is not set,
the current working directory (as of the time HTTPRequest.send_file() is called) will be used.

def my_handler(request):
request.send_file('/srv/files/example.jpg')

server = HTTPServer(my_handler, sendfile=True, sendfile_prefix='/_static/',
file_root='/srv/files')

server.listen()

The above code would result in an HTTP response similar to:

HTTP/1.1 200 OK
Content-Type: image/jpeg
Content-Length: 0
X-Sendfile: /_static/example.jpg

Your proxy server would then be required to detect the X-Sendfile header in that response and insert the appropriate
content and headers.

Note: The sendfile API is quite rough at this point, and is most likely going to be changed in future versions. It is
possible to manually set the appropriate headers to handle sending files yourself if you require more control over the
process.

Request Handlers

A request handler is a callable Python object, typically either a function or a class instance with a defined __call__
method. Request handlers are passed an instance of HTTPRequest representing the current request.

HTTPRequest instances contain all of the information that was sent with an incoming request. The instances also have
numerous methods for building responses.

Note: It is not required to finish responding to a request within the request handler.

1.3. HTTP & Web 19

Pants Documentation, Release 1.0.1

Please see the documentation for the HTTPRequest class below for more information on what you can do.

HTTPServer

class pants.http.server.HTTPServer(request_handler, max_request=10485760, keep_alive=True,
cookie_secret=None, xheaders=False, sendfile=False, send-
file_prefix=None, file_root=None, **kwargs)

An HTTP server, extending the default Server class.

This class automatically uses the HTTPConnection connection class. Rather than through specifying a con-
nection class, its behavior is customized by providing a request handler function that is called whenever a valid
request is received.

A server’s behavior is defined almost entirely by its request handler, and will not send any response by itself
unless the received HTTP request is not valid or larger than the specified limit (which defaults to 10 MiB, or
10,485,760 bytes).

Argu-
ment

De-
fault

Description

re-
quest_handler

A callable that accepts a single argument. That argument is an instance of the
HTTPRequest class representing the current request.

max_request10
MiB

Optional. The maximum allowed length, in bytes, of an HTTP request body. This
should be kept small, as the entire request body will be held in memory.

keep_alive True Optional. Whether or not multiple requests are allowed over a single connection.
cookie_secretNone Optional. A string to use when signing secure cookies.
xheaders False Optional. Whether or not to use X-Forwarded-For and X-Forwarded-Proto

headers.
sendfile False Optional. Whether or not to use X-Sendfile headers. If this is set to a string, that

string will be used as the header name.
send-
file_prefix

None Optional. A string to prefix paths with for use in the X-Sendfile headers. Useful for
nginx.

file_root None Optional. The root path to send files from using send_file().

startSSL(ssl_options={})
Enable SSL on the server, creating an HTTPS server.

When an HTTP server has been secured, the scheme of all HTTPRequest instances is set to https,
otherwise it will be http. Please note that the X-Forwarded-Proto may override scheme if
xheaders is set to True.

See also:

See pants.server.Server.startSSL() for more information on how SSL is implemented within
Pants.

listen(address=None, backlog=1024, slave=True)
Begins listening for connections to the HTTP server.

The given address is resolved, the server is bound to the address, and it then begins listening for con-
nections. If an address isn’t specified, the server will listen on either port 80 or port 443 by default. Port
443 is selected if SSL has been enabled prior to the call to listen, otherwise port 80 will be used.

See also:

See pants.server.Server.listen() for more information on listening servers.

20 Chapter 1. Documentation

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Pants Documentation, Release 1.0.1

HTTPConnection

class pants.http.server.HTTPConnection(*args, **kwargs)
This class implements the HTTP protocol on top of Pants. It specifically processes incoming HTTP requests
and constructs an instance of HTTPRequest before passing that instance to the associated HTTPServer‘s
request handler.

Direct interaction with this class is typically unnecessary, only becoming useful when implementing another
protocol on top of HTTP, such as WebSockets or performing some other action that requires direct control
over the underlying socket.

current_request
An instance of HTTPRequest representing the active request on the connection. If there is no active
request, this will be None.

finish()
This method should be called when the response to the current request has been completed, in preparation
for either closing the connection or attempting to read a new request from the connection.

This method is called automatically when you use the method HTTPRequest.finish().

HTTPRequest

class pants.http.server.HTTPRequest(connection, method, url, protocol, headers=None,
scheme=’http’)

Instances of this class represent single HTTP requests that an HTTPServer has received. Such instances
contain all the information needed to respond to the request, as well as the functions used to build the appropriate
response.

HTTPRequest uses bytes rather than str unless otherwise stated, as network communications take place as
bytes.

remote_ip
The IP address of the client, represented as bytes. If the underlying HTTPServer is set to use
xheaders, this value may be loaded from the X-Real-Ip or X-Forwarded-For headers.

scheme
The scheme through which the request was received. This will typically be http. The scheme will be set
to httpswhen the connection the request was received across is secured. If the underlying HTTPServer
is set to use xheaders, this value may be loaded from the X-Forwarded-Proto header.

protocol
The protocol the request was received across. This is typically either HTTP/1.1 or HTTP/1.0.

method
The HTTP request method, such as GET or POST.

url
The URL that has been requested.

path
The path segment of the url. Note that Pants does not separate the path and parameters segments auto-
matically to save time on each request as the parameters segment is not often utilized.

query
The query segment of the url.

fragment
The fragment segment of the url.

1.3. HTTP & Web 21

https://docs.python.org/2.7/library/functions.html#str

Pants Documentation, Release 1.0.1

headers
An instance of pants.http.utils.HTTPHeaders containing the headers that were received with
the request. HTTPHeaders is effectively a case-insensitive dictionary that normalizes header cases upon
iteration.

host
The host that the request was directed to. This is, effectively, the value of the request’s Host header. If no
such header exists, the value will be set to the bytes 127.0.0.1.

Unlike the hostname, this value may contain a port number if the request was sent to a non-standard
port.

hostname
The hostname segment of the host. This value will always be lower-case.

get
A dictionary of HTTP GET variables. The variables are parsed from the query using urlparse.
parse_qsl() with keep_blank_values set to False.

post
A dictionary of HTTP POST variables. For security, this variable is only populated if the method is POST
or PUT.

If the request’s Content-Type header is set to application/x-www-form-urlencoded,
the variables will be parsed from the body using urlparse.parse_sql() with
keep_blank_values set to False.

If the request’s Content-Type header is set to multipart/form-data, the body will be processed
for both POST variables and files.

files
A dictionary containing files received within the request body. For security, this variable is only populated
if the method is POST or PUT. At this time, Pants only knows how to receive files when the request body
is formatted as multipart/form-data.

The form data variable names will be used for the dictionary keys. Each key will contain a list with one or
more dictionaries representing the received files. A file’s dictionary has the keys: filename, body, and
content_type.

You might receive a file using:

def my_handler(request):
contents = request.files['my_field'][0]['body']

Note: Pants does a poor job of handling files at this time, keeping them entirely in memory while a request
is being handled. It is recommended to use a proxy server with some way to receive files when writing
applications.

In the future, the Pants HTTP server will be modified so that large request bodies and received files are
stored to disk as temporary files as they’re received to reduce memory utilization.

body
A bytes instance containing the entire request body that has not been processed in any way.

connection
The underlying HTTPConnection instance that received this request. You shouldn’t have need to use
this in most situations.

22 Chapter 1. Documentation

https://docs.python.org/2.7/library/urlparse.html#urlparse.parse_qsl
https://docs.python.org/2.7/library/urlparse.html#urlparse.parse_qsl

Pants Documentation, Release 1.0.1

cookies
An instance of Cookie.SimpleCookie representing the cookies received with this request. Cookies
being sent to the client with the response are stored in cookies_out.

cookies_out
An instance of Cookie.SimpleCookie to populate with cookies that should be sent with the response.

finish()
This function should be called when the response has been completed, allowing the associated
HTTPConnection to either close the connection to the client or begin listening for a new request.

Failing to call this function will drastically reduce the performance of the HTTP server, if it will work at
all.

full_url
The full url for this request. This is created by combining the scheme, host, and the url.

get_secure_cookie(name)
Return the signed cookie with the key name if it exists and has a valid signature. Otherwise, return None.

is_secure
Whether or not the request was received via HTTPS.

send(data)
Write data to the client.

Argument Description
data A string of data to be sent to the client.

send_cookies(keys=None, end_headers=False)
Write any cookies associated with the request to the client. If any keys are specified, only the cookies with
the specified keys will be transmitted. Otherwise, all cookies in cookies_out will be written to the
client.

This function is usually called automatically by send_headers.

Argu-
ment

De-
fault

Description

keys None Optional. A list of cookie names to send.
end_headersFalse Optional. If this is set to True, a double CRLF sequence will be written at the end of

the cookie headers, signifying the end of the HTTP headers segment and the
beginning of the response.

send_file(path, filename=None, guess_mime=True, headers=None)
Send a file to the client, given the path to that file. This method makes use of X-Sendfile, if the
HTTPServer instance is configured to send X-Sendfile headers.

If X-Sendfile is not available, Pants will make full use of caching headers, Ranges, and the sendfile
system call to improve file transfer performance. Additionally, if the client had made a HEAD request, the
contents of the file will not be transferred.

Note: The request is finished automatically by this method.

1.3. HTTP & Web 23

https://docs.python.org/2.7/library/cookie.html#Cookie.SimpleCookie
https://docs.python.org/2.7/library/cookie.html#Cookie.SimpleCookie
http://www.kernel.org/doc/man-pages/online/pages/man2/sendfile.2.html

Pants Documentation, Release 1.0.1

Argu-
ment

De-
fault

Description

path The path to the file to send. If this is a relative path, and the HTTPServer instance
has no root path for Sendfile set, the path will be assumed relative to the current
working directory.

file-
name

None Optional. If this is set, the file will be sent as a download with the given filename as
the default name to save it with.

guess_mimeTrue Optional. If this is set to True, Pants will attempt to set the Content-Type header
based on the file extension.

head-
ers

None Optional. A dictionary of HTTP headers to send with the file.

Note: If you set a Content-Type header with the headers parameter, the mime type will not be
used, even if guess_mime is True. The headers will also override any Content-Disposition
header generated by the filename parameter.

send_headers(headers, end_headers=True, cookies=True)
Write a dictionary of HTTP headers to the client.

Argu-
ment

De-
fault

Description

head-
ers

A dictionary of HTTP headers.

end_headersTrue Optional. If this is set to True, a double CRLF sequence will be written at the end of
the cookie headers, signifying the end of the HTTP headers segment and the
beginning of the response.

cook-
ies

True Optional. If this is set to True, HTTP cookies will be sent along with the headers.

send_response(content, code=200, content_type=’text/plain’)
Write a very simple response, in one easy function. This function is for convenience, and allows you to
send a basic response in one line.

Basically, rather than:

def request_handler(request):
output = "Hello, World!"

request.send_status(200)
request.send_headers({

'Content-Type': 'text/plain',
'Content-Length': len(output)
})

request.send(output)
request.finish()

You can simply:

def request_handler(request):
request.send_response("Hello, World!")

Argument Default Description
content A string of content to send to the client.
code 200 Optional. The HTTP status code to send to the client.
content_type text/plain Optional. The Content-Type header to send.

24 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

send_status(code=200)
Write an HTTP status line (the very first line of any response) to the client, using the same HTTP protocol
version as the request. If one is available, a human readable status message will be appended after the
provided code.

For example, request.send_status(404) would result in HTTP/1.1 404 Not Found being
sent to the client, assuming of course that the request used HTTP protocol version HTTP/1.1.

Argument Default Description
code 200 Optional. The HTTP status code to send to the client.

set_secure_cookie(name, value, expires=2592000, **kwargs)
Set a timestamp on a cookie and sign it, ensuring that it can’t be altered by the client. To use this, the
HTTPServer must have a cookie_secret set.

Cookies set with this function may be read with get_secure_cookie().

If the provided value is a dictionary, list, or tuple the value will be serialized into JSON and encoded as
UTF-8. Unicode strings will also be encoded as UTF-8. Byte strings will be passed as is. All other types
will result in a TypeError.

Argu-
ment

De-
fault

Description

name The name of the cookie to set.
value The value of the cookie.
expires 2592000Optional. How long, in seconds, the cookie should last before expiring. The

default value is equivalent to 30 days.

Additional arguments, such as path and secure may be set by providing them as keyword arguments.
The HttpOnly attribute will be set by default on secure cookies..

time
The amount of time that has elapsed since the request was received. If the request has been finished already,
this will be the total time that elapsed over the duration of the request.

1.3.2 pants.http.client

pants.http.client implements a basic asynchronous HTTP client on top of Pants with an API modelled after
that of the wonderful requests library. The client supports keep-alive and SSL for connections, domain verification
for SSL certificates, basic WWW authentication, sessions with persistent cookies, automatic redirect handling, auto-
matic decompression of responses, connection timeouts, file uploads, and saving large responses to temporary files to
decrease memory usage.

Logic is implemented using a series of request handlers.

Making Requests

It’s simple and easy to make requests, and it only requires that you have an instance of HTTPClient ready.

from pants.http import HTTPClient
client = HTTPClient()

Like with requests, there are simple methods for making requests with the different HTTP methods. For now, let’s get
information for a bunch of Pants’ commits on GitHub.

client.get("https://api.github.com/repos/ecdavis/pants/commits")

1.3. HTTP & Web 25

http://www.python-requests.org/
http://www.python-requests.org/

Pants Documentation, Release 1.0.1

You’ll notice that this is very similar to making a request with requests. However, we do not get a response objects.
Actually, calling HTTPClient.get() returns an instance of HTTPRequest rather than anything to do with a
response, but we’ll get to that later.

The Pants HTTP client is asynchronous, so to get your response, you need a response handler. There are several ways
to set one up, but the easiest way is to pass it to your HTTPClient during initialization.

def handle_response(response):
if response.status_code != 200:

print "There was a problem!"

client = HTTPClient(handle_response)

response in this situation is an instance of HTTPResponse, and it has an API modelled after the response objects
that requests would give you.

Making Useful Requests

Basic GET requests are nice, but you’ll often want to send data to the server. For query parameters you can use the
optional params argument of the various request methods, like so:

data = {'since': '2013-11-01'}
client.get("https://api.github.com/repos/ecdavis/pants/commits", params=data)

With that, you could eventually take your response and get the correct URL.

>>> response.url
'https://api.github.com/repos/ecdavis/pants/commits?since=2013-11-01'

You can also post data to the server, either as a pre-made string, or as a dictionary of values to be encoded.

client.post("http://httpbin.org/post", data="Hello World!")
client.post("http://httpbin.org/post", data={"greeting": "Hello"})

By default, the Content-Type header will be set to application/x-www-form-urlencoded when you
provide data for the request body. If any files are present, it will instead default to multipart/form-data to
transmit those. You can also manually set the header when making your request.

You set files via the files parameter, which expects a dictionary of form field names and file objects. You can also
provide filenames if desired.

client.post("http://httpbin.org/post", files={'file': open("test.txt")})
client.post("http://httpbin.org/post", files={'file': ("test.txt", open("test.txt"))})

You can, of course, use data and files together. Please note that, if you do use them together, you’ll need to supply data
as a dictionary. Data strings are not supported.

As many of you have probably noticed, this is very similar to using requests. The Pants API was implemented this
way to make it easier to switch between the two libraries.

Reading Responses

Making your request is only half the battle, of course. You have to read your response when it comes in. And, for that,
you start with the status code.

26 Chapter 1. Documentation

http://www.python-requests.org/

Pants Documentation, Release 1.0.1

>>> response.status_code
200
>>> response.status_text
'OK'
>>> response.status
'200 OK'

Unlike with requests, there is no raise_for_status() method available. Raising a strange exception in an
asynchronous framework that your code isn’t designed to catch just wouldn’t work.

Headers

HTTP headers are case-insensitive, and so the headers are stored in a special case-insensitive dictionary made available
as HTTPResponse.headers.

>>> response.headers
HTTPHeaders({

'Content-Length': 986,
'Server': 'gunicorn/0.17.4',
'Connection': 'keep-alive',
'Date': 'Wed, 06 Nov 2013 05:58:53 GMT',
'Access-Control-Allow-Origin': '*',
'Content-Type': 'application/json'
})

>>> response.headers['content-length']
986

Nothing special here.

Cookies

Cookies are a weak point of Pants’ HTTP client at this time. Cookies are stored in instances of Cookie.
SimpleCookie, which doesn’t handle multiple domains. Pants has logic to prevent sending cookies to the wrong
domains, but ideally it should move to using a better cookie storage structure in future versions that handles multiple
domains elegantly.

>>> response.cookies['cake']
<Morsel: cake='lie'>
>>> response.cookies['cake'].value
'lie'

As you can see, Pants does not yet handle cookies as well as requests. Setting cookies is a bit better.

client.get("http://httpbin.org/cookies", cookies={"cake": "lie"})

Redirects

The HTTP client will follow redirects automatically. When this happens, the redirecting responses are stored in the
HTTPResponse.history list.

>>> response.history
[<HTTPResponse [301 Moved Permanently] at 0x2C988F0>]

1.3. HTTP & Web 27

https://docs.python.org/2.7/library/cookie.html#Cookie.SimpleCookie
https://docs.python.org/2.7/library/cookie.html#Cookie.SimpleCookie

Pants Documentation, Release 1.0.1

You can limit the number of times the HTTP client will automatically follow redirects with the max_redirects
argument.

client.get("http://github.com/", max_redirects=0)

By default, Pants will follow up to 10 redirects.

Exceptions

class pants.http.client.CertificateError

class pants.http.client.HTTPClientException
The base exception for all the exceptions used by the HTTP client, aside from CertificateError.

class pants.http.client.MalformedResponse
The exception returned when the response is malformed in some way.

class pants.http.client.RequestClosed
The exception returned when the connection closes before the entire request has been downloaded.

class pants.http.client.RequestTimedOut
The exception returned when a connection times out.

HTTPClient

class pants.http.client.HTTPClient(*args, **kwargs)
An easy to use, asynchronous HTTP client implementing HTTP 1.1. All arguments passed to HTTPClient are
used to initialize the default session. See Session for more details. The following is a basic example of using
an HTTPClient to fetch a remote resource:

from pants.http import HTTPClient
from pants.engine import Engine

def response_handler(response):
Engine.instance().stop()
print response.content

client = HTTPClient(response_handler)
client.get("http://httpbin.org/ip")
Engine.instance().start()

Groups of requests can have their behavior customized with the use of sessions:

from pants.http import HTTPClient
from pants.engine import Engine

def response_handler(response):
Engine.instance().stop()
print response.content

def other_handler(response):
print response.content

client = HTTPClient(response_handler)
client.get("http://httpbin.org/cookies")

with client.session(cookies={'pie':'yummy'}):

28 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

client.get("http://httpbin.org/cookies")

Engine.instance().start()

delete(url, **kwargs)
Begin a DELETE request. See request() for more details.

get(url, params=None, **kwargs)
Begin a GET request. See request() for more details.

head(url, params=None, **kwargs)
Begin a HEAD request. See request() for more details.

on_error(response, exception)
Placeholder. Called when an error occurs.

Argument Description
exception An Exception instance with information about the error that occurred.

on_headers(response)
Placeholder. Called when we’ve received headers for a request. You can abort a request at this time by
returning False from this function. It must be False, and not simply a false-like value, such as an empty
string.

Note: This function isn’t called for HTTP HEAD requests.

Argument Description
response A HTTPResponse instance with information about the received response.

on_progress(response, received, total)
Placeholder. Called when progress is made in downloading a response.

Argu-
ment

Description

response A HTTPResponse instance with information about the response.
received The number of bytes received thus far.
total The total number of bytes expected for the response. This will be 0 if we don’t know how

much to expect.

on_response(response)
Placeholder. Called when a complete response has been received.

Argument Description
response A HTTPResponse instance with information about the received response.

on_ssl_error(response, certificate, exception)
Placeholder. Called when the remote server’s SSL certificate failed initial verification. If this method
returns True, the certificate will be accepted, otherwise, the connection will be closed and on_error()
will be called.

Argu-
ment

Description

response A HTTPResponse instance with information about the response. Notably, with the
host to expect.

certifi-
cate

A dictionary representing the certificate that wasn’t automatically verified.

excep-
tion

A CertificateError instance with information about the error that occurred.

1.3. HTTP & Web 29

Pants Documentation, Release 1.0.1

options(url, **kwargs)
Begin an OPTIONS request. See request() for more details.

patch(url, data=None, **kwargs)
Begin a PATCH request. See request() for more details.

post(url, data=None, files=None, **kwargs)
Begin a POST request. See request() for more details.

put(url, data=None, **kwargs)
Begin a PUT request. See request() for more details.

request(*args, **kwargs)
Begin a request. Missing parameters will be taken from the active session when available. See Session.
request() for more details.

session(*args, **kwargs)
Create a new session. See Session for details.

trace(url, **kwargs)
Begin a TRACE request. See request() for more details.

HTTPRequest

class pants.http.client.HTTPRequest(session, method, path, url, headers, cookies, body, timeout,
max_redirects, keep_alive, auth)

A very basic structure for storing HTTP request information.

response
The HTTPResponse instance representing the response to this request.

session
The Session this request was made in.

method
The HTTP method of this request, such as GET, POST, or HEAD.

path
The path of this request.

url
A tuple containing the full URL of the request, as processed by urlparse.urlparse().

headers
A dictionary of headers sent with this request.

cookies
A Cookie.SimpleCookie instance of cookies sent with this request.

body
A list of strings and files sent as this request’s body.

timeout
The time to wait, in seconds, of no activity to allow before timing out.

max_redirects
The maximum remaining number of redirects before not automatically redirecting.

keep_alive
Whether or not the connection should be reused after this request.

30 Chapter 1. Documentation

https://docs.python.org/2.7/library/urlparse.html#urlparse.urlparse
https://docs.python.org/2.7/library/cookie.html#Cookie.SimpleCookie

Pants Documentation, Release 1.0.1

auth
Either a tuple of (username, password) or an instance of AuthBase responsible for authorizing
this request with the server.

HTTPResponse

class pants.http.client.HTTPResponse(request)
The HTTPResponse class represents a single HTTPResponse, and has all the available information about a
response, including the redirect history and the original HTTPRequest.

length
The length of the raw response.

http_version
The HTTP version of the response.

status_code
The HTTP status code of the response, such as 200.

status_text
The human readable status text explaining the status code, such as Not Found.

cookies
A Cookie.SimpleCookie instance of all the cookies received with the response.

headers
A dictionary of all the headers received with the response.

content
The content of the response as a byte string. Be careful when using this with large responses, as it will
load the entire response into memory. None if no data has been received.

encoding
This is the detected character encoding of the response. You can also set this to a specific character set to
have text decoded properly.

Pants will attempt to fill this value from the Content-Type response header. If no value was available, it
will be None.

file
The content of the response as a tempfile.SpooledTemporaryFile. Pants uses temporary files to
decrease memory usage for large responses. None if no data has been received.

handle_301(client)
Handle the different redirect codes.

handle_401(client)
Handle authorization, if we know how.

iter_content(chunk_size=1, decode_unicode=False)
Iterate over the content of the response. Using this, rather than content or text can prevent the loading
of large responses into memory in their entirety.

Argument De-
fault

Description

chunk_size 1 The number of bytes to read at once.
de-
code_unicode

False Whether or not to decode the bytes into unicode using the response’s
encoding.

1.3. HTTP & Web 31

https://docs.python.org/2.7/library/cookie.html#Cookie.SimpleCookie

Pants Documentation, Release 1.0.1

iter_lines(chunk_size=512, decode_unicode=False)
Iterate over the content of the response, one line at a time. By using this rather than content or text
you can prevent loading of the entire response into memory. The two arguments to this method are passed
directly to iter_content().

json(**kwargs)
The content of the response, having been interpreted as JSON. This uses the value of encoding if
possible. If encoding is not set, it will default to UTF-8.

Any provided keyword arguments will be passed to json.loads().

status
The status code and status text as a string.

text
The content of the response, after being decoded into unicode with encoding. Be careful when using this
with large responses, as it will load the entire response into memory. None if no data has been received.

If encoding is None, this will default to UTF-8.

Session

class pants.http.client.Session(client, on_response=None, on_headers=None,
on_progress=None, on_ssl_error=None, on_error=None,
timeout=None, max_redirects=None, keep_alive=None,
auth=None, headers=None, cookies=None, verify_ssl=None,
ssl_options=None)

The Session class is the heart of the HTTP client, making it easy to share state between multiple requests, and
enabling the use of with syntax. They’re responsible for determining everything about a request before handing
it back to HTTPClient to be executed.

Argu-
ment

De-
fault

Description

client The HTTPClient instance this Session is associated with.
on_response Optional. A callable that will handle any received responses, rather than the

HTTPClient’s own on_response() method.
on_headers Optional. A callable for when response headers have been received.
on_progress Optional. A callable for progress notifications.
on_ssl_error Optional. A callable responsible for handling SSL verification errors, if

verify_ssl is True.
on_error Optional. A callable that will handle any errors that occur.
timeout 30 Optional. The time to wait, in seconds, of no activity to allow before timing out.
max_redirects10 Optional. The maximum number of times to follow a server-issued redirect.
keep_alive True Optional. Whether or not a single connection will be reused for multiple requests.
auth None Optional. An instance of AuthBase for authenticating requests to the server.
headers None Optional. A dictionary of default headers to send with requests.
verify_ssl False Optional. Whether or not to attempt to check the certificate of the remote secure

server against its hostname.
ssl_options None Optional. Options to use when initializing SSL. See Stream.startSSL() for

more.

client
The HTTPClient this Session is associated with.

delete(url, **kwargs)
Begin a DELETE request. See request() for more details.

32 Chapter 1. Documentation

https://docs.python.org/2.7/library/json.html#json.loads

Pants Documentation, Release 1.0.1

get(url, params=None, **kwargs)
Begin a GET request. See request() for more details.

head(url, params=None, **kwargs)
Begin a HEAD request. See request() for more details.

options(url, **kwargs)
Begin an OPTIONS request. See request() for more details.

patch(url, data=None, **kwargs)
Begin a PATCH request. See request() for more details.

post(url, data=None, files=None, **kwargs)
Begin a POST request. See request() for more details.

put(url, data=None, **kwargs)
Begin a PUT request. See request() for more details.

request(method, url, params=None, data=None, headers=None, cookies=None, files=None,
auth=None, timeout=None, max_redirects=None, keep_alive=None)

Begin a request.

Argument Description
method The HTTP method of the request.
url The URL to request.
params Optional. A dictionary or string of query parameters to add to the request.
data Optional. A dictionary or string of content to send in the request body.
headers Optional. A dictionary of headers to send with the request.
cookies Optional. A dictionary or CookieJar of cookies to send with the request.
files Optional. A dictionary of file-like objects to upload with the request.
auth Optional. An instance of AuthBase to use to authenticate the request.
timeout Optional. The time to wait, in seconds, of no activity to allow before timing out.
max_redirects Optional. The maximum number of times to follow a server-issued redirect.
keep_alive Optional. Whether or not to reuse the connection for multiple requests.

session(*args, **kwargs)
Create a new session. See Session for details.

trace(url, **kwargs)
Begin a TRACE request. See request() for more details.

1.3.3 pants.http.websocket

pants.http.websocket implements the WebSocket protocol, as described by RFC 6455, on top of the Pants
HTTP server using an API similar to that provided by pants.stream.Stream.

Using WebSockets

To start working with WebSockets, you’ll need to create a subclass of WebSocket. As with Stream, WebSocket
instances are meant to contain the majority of your networking logic through the definition of custom event handlers.
Event handlers are methods that have names beginning with on_ that can be safely overridden within your subclass.

Listening for Connections

WebSocket is designed to be used as a request handler for the Pants HTTP server, pants.http.server.
HTTPServer. As such, to begin listening for WebSocket connections, you must create an instance of HTTPServer

1.3. HTTP & Web 33

https://tools.ietf.org/html/rfc6455.html

Pants Documentation, Release 1.0.1

using your custom WebSocket subclass as its request handler.

from pants.http import HTTPServer, WebSocket
from pants import Engine

class EchoSocket(WebSocket):
def on_read(self, data):

self.write(data)

HTTPServer(EchoSocket).listen(8080)
Engine.instance().start()

If you need to host traditional requests from your HTTPServer instance, you may invoke the WebSocket handler simply
by creating an instance of your WebSocket subclass with the appropriate pants.http.server.HTTPRequest
instance as its only argument:

from pants.http import HTTPServer, WebSocket
from pants import Engine

class EchoSocket(WebSocket):
def on_read(self, data):

self.write(data)

def request_handler(request):
if request.path == '/_ws':

EchoSocket(request)
else:

request.send_response("Nothing to see here.")

HTTPServer(request_handler).listen(8080)
Engine.instance().start()

WebSocket and Application

WebSocket has support for pants.web.application.Application and can easily be used as a request
handler for any route. Additionally, variables captured from the URL by Application will be made accessible to
the WebSocket.on_connect() event handler. The following example of a WebSocket echo server displays a
customized welcome message depending on the requested URL.

from pants.http import WebSocket
from pants.web import Application

app = Application()

@app.route("/ws/<name>")
class EchoSocket(WebSocket):

def on_connect(self, name):
self.write(u"Hello, {name}!".format(name=name))

def on_read(self, data):
self.write(data)

app.run(8080)

34 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

WebSocket Security

Secure Connections

WebSocket relies upon the pants.http.server.HTTPServer instance serving it to provide SSL. This can
be as easy as calling the server’s startSSL() method.

To determine whether or not the WebSocket instance is using a secure connection, you may use the is_secure
attribute.

Custom Handshakes

You may implement custom logic during the WebSocket’s handshake by overriding the WebSocket.
on_handshake() event handler. The on_handshake handler is called with a reference to the HTTPRequest
instance the WebSocket handshake is happening upon as well as an empty dictionary that may be used to set custom
headers on the HTTP response.

on_handshake is expected to return a True value if the request is alright. Returning a False value will result in
the generation of an error page. The following example of a custom handshake requires a secret HTTP header in the
request, and that the connection is secured:

from pants.http import WebSocket

class SecureSocket(WebSocket):
def on_handshake(self, request, headers):

return self.is_secure and 'X-Pizza' in request.headers

def on_connect(self):
self.write(u"Welcome to PizzaNet.")

Reading and Writing Data

WebSockets are a bit different than normal Stream instances, as a WebSocket can transmit both byte strings and
unicode strings, and data is encapsulated into formatted messages with definite lengths. Because of this, reading from
one can be slightly different.

Mostly, however, the read_delimiter works in exactly the same way as that of pants.stream.Stream.

Unicode Strings and Byte Strings

WebSocket strictly enforces the difference between byte strings and unicode strings. As such, the connection will
be closed with a protocol error if any of the following happen:

1. The string types of the read_delimiter and the buffer differ.

2. There is an existing string still in the buffer when the client sends another string of a different type.

3. The read_delimiter is currently a struct and the buffer does not contain a byte string.

Of those conditions, the most likely to occur is the first. Take the following code:

from pants.http import WebSocket, HTTPServer
from pants import Engine

def process(text):

1.3. HTTP & Web 35

Pants Documentation, Release 1.0.1

return text.decode('rot13')

class LineOriented(WebSocket):
def on_connect(self):

self.read_delimiter = "\n"

def on_read(self, line):
self.write(process(line))

HTTPServer(LineOriented).listen(8080)
Engine.instance().start()

And, on the client:

<!DOCTYPE html>
<textarea id="editor"></textarea>

<input type="submit" value="Send">
<script>

var ws = new WebSocket("ws://localhost:8080/"),
input = document.querySelector('#editor'),
button = document.querySelector('input');

ws.onmessage = function(e) {
alert("Got back: " + e.data);

}

button.addEventListener("click", function() {
ws.send(input.value + "\n");

});
</script>

On Python 2.x, the read delimiter will be a byte string. The WebSocket will expect to receive a byte string. However,
the simple JavaScript shown above sends unicode strings. That simple service would fail immediately on Python 2.

To avoid the problem, be sure to use the string type you really want for your read delimiters. For the above, that’s as
simple as setting the read delimiter with:

self.read_delimiter = u"\n"

WebSocket Messages

In addition to the standard types of read_delimiter, WebSocket instances support the use of a special value
called EntireMessage. When using EntireMessage, full messages will be sent to your on_read event han-
dler, as framed by the remote end-point.

EntireMessage is the default read_delimiter for WebSocket instances, and it makes it dead simple to write
simple services.

The following example implements a simple RPC system over WebSockets:

import json

from pants.http.server import HTTPServer
from pants.http.websocket import WebSocket, FRAME_TEXT
from pants import Engine

class RPCSocket(WebSocket):

36 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

methods = {}

@classmethod
def method(cls, name):

''' Add a method to the RPC. '''
def decorator(method):

cls.methods[name] = method
return method

return decorator

def json(self, **data):
''' Send a JSON object to the remote end-point. '''
JSON outputs UTF-8 encoded text by default, so use the frame
argument to let WebSocket know it should be sent as text to the
remote end-point, rather than as binary data.
self.write(json.dumps(data), frame=FRAME_TEXT)

def on_read(self, data):
Attempt to decode a JSON message.
try:

data = json.loads(data)
except ValueError:

self.json(ok=False, result="can't decode JSON")
return

Lookup the desired method. Return an error if it doesn't exist.
method = data['method']
if not method in self.methods:

self.json(ok=False, result="no such method")
return

method = self.methods[method]
args = data.get("args", tuple())
kwargs = data.get("kwargs", dict())
ok = True

Try running the method, and capture the result. If it errors, set
the result to the error string and ok to False.
try:

result = method(*args, **kwargs)
except Exception as ex:

ok = False
result = str(ex)

self.json(ok=ok, result=result)

@RPCSocket.method("rot13")
def rot13(string):

return string.decode("rot13")

HTTPServer(RPCSocket).listen(8080)
Engine.instance().start()

As you can see, it never even uses read_delimiter. The client simply sends JSON messages, with code such as:

1.3. HTTP & Web 37

Pants Documentation, Release 1.0.1

my_websocket.send(JSON.stringify({method: "rot13", args: ["test"]}));

This behavior is completely reliable, even when the client is sending fragmented messages.

WebSocket

class pants.http.websocket.WebSocket(request, *arguments)
An implementation of WebSockets on top of the Pants HTTP server using an API similar to that of pants.
stream.Stream.

A WebSocket instance represents a WebSocket connection to a remote client. In the future, WebSocket will
be modified to support acting as a client in addition to acting as a server.

When using WebSockets you write logic as you could for Stream, using the same read_delimiter and
event handlers, while the WebSocket implementation handles the initial negotiation and all data framing for you.

Argument Description
request The HTTPRequest to begin negotiating a WebSocket connection over.

is_secure
Whether or not the underlying HTTP connection is secured.

allow_old_handshake
Whether or not to allow clients using the old draft-76 protocol to connect. By default, this is set to False.

Due to the primitive design of the draft-76 version of the WebSocket protocol, there is significantly reduced
functionality when it is being used.

1. Binary data cannot be transmitted. All communications between the WebSocket instance and the
remote end-point must take place using unicode strings.

2. Connections are closed immediately with no concept of close reasons. When you use close() on
a draft-76 WebSocket, it will flush the buffer and then, once the buffer empties, close the connection
immediately.

3. There are no control frames, such as the PING frames created when you invoke ping().

There are other missing features as well, such as extensions and the ability to fragment long messages, but
Pants does not currently provide support for those features at this time.

buffer_size
The maximum size, in bytes, of the internal buffer used for incoming data.

When buffering data it is important to ensure that inordinate amounts of memory are not used. Setting the
buffer size to a sensible value can prevent coding errors or malicious use from causing your application to
consume increasingly large amounts of memory. By default, a maximum of 64kb of data will be stored.

The buffer size is mainly relevant when using a string value for the read_delimiter. Because you
cannot guarantee that the string will appear, having an upper limit on the size of the data is appropriate.

If the read delimiter is set to a number larger than the buffer size, the buffer size will be increased to
accommodate the read delimiter.

When the internal buffer’s size exceeds the maximum allowed, the on_overflow_error() callback
will be invoked.

Attempting to set the buffer size to anything other than an integer or long will raise a TypeError.

close(flush=True, reason=1000, message=None)
Close the WebSocket connection. If flush is True, wait for any remaining data to be sent and send a close
frame before closing the connection.

38 Chapter 1. Documentation

http://en.wikipedia.org/wiki/WebSockets
http://tools.ietf.org/html/draft-hixie-thewebsocketprotocol-76

Pants Documentation, Release 1.0.1

Argu-
ment

De-
fault

Description

flush True Optional. If False, closes the connection immediately, without ensuring all
buffered data is sent.

reason 1000 Optional. The reason the socket is closing, as defined at RFC 6455#section-7.4.
message None Optional. A message string to send with the reason code, rather than the default.

local_address
The address of the WebSocket on the local machine.

By default, this will be the value of socket.getsockname or None. It is possible for user code to
override the default behaviour and set the value of the property manually. In order to return the property
to its default behaviour, user code then has to delete the value. Example:

default behaviour
channel.local_address = custom_value
channel.local_address will return custom_value now
del channel.local_address
default behaviour

on_close()
Placeholder. Called after the WebSocket has finished closing.

on_connect(*arguments)
Placeholder. Called after the WebSocket has connected to a client and completed its handshake. Any
additional arguments passed to the WebSocket instance’s constructor will be passed to this method when
it is invoked, making it easy to use WebSocket together with the URL variables captured by pants.
web.application.Application, as shown in the following example:

from pants.web import Application
from pants.http import WebSocket

app = Application()
@app.route("/ws/<int:id>")
class MyConnection(WebSocket):

def on_connect(self, id):
pass

on_handshake(request, headers)
Placeholder. Called during the initial handshake, making it possible to validate the request with custom
logic, such as Origin checking and other forms of authentication.

If this function returns a False value, the handshake will be stopped and an error will be sent to the client.

Argu-
ment

Description

request The pants.http.server.HTTPRequest being upgraded to a WebSocket.
headers An empty dict. Any values set here will be sent as headers when accepting (or rejecting)

the connection.

on_overflow_error(exception)
Placeholder. Called when an internal buffer on the WebSocket has exceeded its size limit.

By default, logs the exception and closes the WebSocket.

Argument Description
exception The exception that was raised.

on_pong(data)
Placeholder. Called when a PONG control frame is received from the remote end-point in response to an

1.3. HTTP & Web 39

https://tools.ietf.org/html/rfc6455.html#section-7.4

Pants Documentation, Release 1.0.1

earlier ping.

When used together with the ping()method, on_pongmay be used to measure the connection’s round-
trip time. See ping() for more information.

Argu-
ment

Description

data Either the RTT expressed as seconds, or an arbitrary byte string that served as the PONG
frame’s payload.

on_read(data)
Placeholder. Called when data is read from the WebSocket.

Argu-
ment

Description

data A chunk of data received from the socket. Binary data will be provided as a byte string, and
text data will be provided as a unicode string.

on_write()
Placeholder. Called after the WebSocket has finished writing data.

ping(data=None)
Write a ping frame to the WebSocket. You may, optionally, provide a byte string of data to be used as
the ping’s payload. When the end-point returns a PONG, and the on_pong() method is called, that byte
string will be provided to on_pong. Otherwise, on_pong will be called with the elapsed time.

Argument Description
data Optional. A byte string of data to be sent as the ping’s payload.

read_delimiter
The magical read delimiter which determines how incoming data is buffered by the WebSocket.

As data is read from the socket, it is buffered internally by the WebSocket before being passed to the
on_read() callback. The value of the read delimiter determines when the data is passed to the callback.
Valid values are None, a string, an integer/long, a compiled regular expression, an instance of struct.
Struct, an instance of netstruct.NetStruct, or the EntireMessage object.

When the read delimiter is the EntireMessage object, entire WebSocket messages will be passed to
on_read() immediately once they have been received in their entirety. This is the default behavior for
WebSocket instances.

When the read delimiter is None, data will be passed to on_read() immediately after it has been
received.

When the read delimiter is a byte string or unicode string, data will be buffered internally until that string
is encountered in the incoming data. All data up to but excluding the read delimiter is then passed to
on_read(). The segment matching the read delimiter itself is discarded from the buffer.

Note: When using strings as your read delimiter, you must be careful to use unicode strings if you wish
to send and receive strings to a remote JavaScript client.

When the read delimiter is an integer or a long, it is treated as the number of bytes to read before passing
the data to on_read().

When the read delimiter is an instance of struct.Struct, the Struct’s size is fully buffered and the
data is unpacked before the unpacked data is sent to on_read(). Unlike other types of read delimiters,
this can result in more than one argument being sent to the on_read() event handler, as in the following
example:

40 Chapter 1. Documentation

https://docs.python.org/2.7/library/struct.html#struct.Struct
https://docs.python.org/2.7/library/struct.html#struct.Struct
https://docs.python.org/2.7/library/struct.html#struct.Struct

Pants Documentation, Release 1.0.1

import struct
from pants.http import WebSocket

class Example(WebSocket):
def on_connect(self):

self.read_delimiter = struct.Struct("!ILH")

def on_read(self, packet_type, length, id):
pass

You must send binary data from the client when using structs as your read delimiter. If Pants receives a
unicode string while a struct read delimiter is set, it will close the connection with a protocol error. This
holds true for the Netstruct delimiters as well.

When the read delimiter is an instance of netstruct.NetStruct, the NetStruct’s minimum_size is
buffered and unpacked with the NetStruct, and additional data is buffered as necessary until the NetStruct
can be completely unpacked. Once ready, the data will be passed to on_read(). Using Struct and
NetStruct are very similar.

When the read delimiter is a compiled regular expression (re.RegexObject), there are two possible
behaviors that you may switch between by setting the value of regex_search. If regex_search
is True, as is the default, the delimiter’s search() method is used and, if a match is found, the string
before that match is passed to on_read(). The segment that was matched by the regular expression will
be discarded.

If regex_search is False, the delimiter’s match() method is used instead and, if a match is found,
the match object itself will be passed to on_read(), giving you access to the capture groups. Again, the
segment that was matched by the regular expression will be discarded from the buffer.

Attempting to set the read delimiter to any other value will raise a TypeError.

The effective use of the read delimiter can greatly simplify the implementation of certain protocols.

remote_address
The remote address to which the WebSocket is connected.

By default, this will be the value of socket.getpeername or None. It is possible for user code to
override the default behaviour and set the value of the property manually. In order to return the property
to its default behaviour, user code then has to delete the value. Example:

default behaviour
channel.remote_address = custom_value
channel.remote_address will return custom_value now
del channel.remote_address
default behaviour

write(data, frame=None, flush=False)
Write data to the WebSocket.

Data will not be written immediately, but will be buffered internally until it can be sent without blocking
the process.

Calling write() on a closed or disconnected WebSocket will raise a RuntimeError.

If data is a unicode string, the data will be sent to the remote end-point as text using the frame opcode for
text. If data is a byte string, the data will be sent to the remote end-point as binary data using the frame
opcode for binary data. If you manually specify a frame opcode, the provided data must be a byte string.

An appropriate header for the data will be generated by this method, using the length of the data and the
frame opcode.

1.3. HTTP & Web 41

https://docs.python.org/2.7/library/re.html#re.RegexObject
https://docs.python.org/2.7/library/re.html#re.RegexObject.search
https://docs.python.org/2.7/library/re.html#re.RegexObject.match

Pants Documentation, Release 1.0.1

Argu-
ments

Description

data A string of data to write to the WebSocket. Unicode will be converted automatically.
frame Optional. The frame opcode for this message.
flush Optional. If True, flush the internal write buffer. See

pants.stream.Stream.flush() for details.

write_file(sfile, nbytes=0, offset=0, flush=False)
Write a file to the WebSocket.

This method sends an entire file as one huge binary frame, so be careful with how you use it.

Calling write_file() on a closed or disconnected WebSocket will raise a RuntimeError.

Arguments Description
sfile A file object to write to the WebSocket.
nbytes Optional. The number of bytes of the file to write. If 0, all bytes will be written.
offset Optional. The number of bytes to offset writing by.
flush Optional. If True, flush the internal write buffer. See flush() for details.

write_packed(*data, **kwargs)
Write packed binary data to the WebSocket.

Calling write_packed() on a closed or disconnected WebSocket will raise a RuntimeError.

If the current read_delimiter is an instance of struct.Struct or netstruct.NetStruct
the format will be read from that Struct, otherwise you will need to provide a format.

Argu-
ment

Description

*data Any number of values to be passed through struct and written to the remote host.
format Optional. A formatting string to pack the provided data with. If one isn’t provided, the

read delimiter will be used.
flush Optional. If True, flush the internal write buffer. See flush() for details.

EntireMessage

pants.http.websocket.EntireMessage
EntireMessage is a unique Python object that, when set as the read_delimiter for a WebSocket
instance, will cause entire messages to be passed to the on_read() event handler at once.

1.3.4 pants.web.application

pants.web.application implements a minimalistic framework for building websites on top of Pants.

The Application class features a powerful, easy to use request routing system and an API similar to that of the
popular Flask project.

Note: Application does not provide out of the box support for sessions or templates, and it is not compatible with
WSGI middleware as it is not implemented via WSGI.

42 Chapter 1. Documentation

https://docs.python.org/2.7/library/struct.html#struct.Struct
https://docs.python.org/2.7/library/struct.html#module-struct
http://flask.pocoo.org/

Pants Documentation, Release 1.0.1

Applications

Instances of the Application class are callable and act as request handlers for the pants.http.server.
HTTPServer class. As such, to implement a server you just have to create an HTTPServer instance using your
application.

from pants.http import HTTPServer
from pants.web import Application

app = Application()

HTTPServer(app).listen(8080)

Alternatively, you may call the Application’s run() method, which creates an instance of HTTPServer for you and
starts Pants’ global engine.

The main features of an Application are its powerful request routing table and its output handling.

Routing

When registering new request handlers with an Application instance, you are required to provide a specially
formatted rule. These rules allow you to capture variables from URLs on top of merely routing requests, making it
easy to create attractive URLs bereft of unfriendly query strings.

Rules in their simplest form will match a static string.

@app.route("/")
def index(request):

return "Index Page"

@app.route("/welcome")
def welcome(request):

return "Hello, Programmer!"

Such an Application would have two pages, and not be exceptionally useful by any definition. Adding a simple
variable makes things much more interesting.

@app.route("/welcome/<name>")
def welcome(request, name):

return "Hello, %s!" % name

Variables are created using inequality signs, as demonstrated above, and allow you to capture data directly from a URL.
By default, a variable accepts any character except a slash (/) and returns the entire captured string as an argument to
your request handler.

It is possible to change this behavior by naming a Converter within the variable definition using the format
<converter:name> where converter is the name of the converter to use. It is not case-sensitive. For example,
the int converter:

@app.route("/user/<int:id>")
def user(request, id):

return session.query(User).filter_by(id=id).first().username

In the above example, the id is automatically converted to an integer by the framework. The converter also serves to
limit the URLs that will match a rule. Variables using the int converter will only match numbers.

Finally, you may provide default values for variables:

1.3. HTTP & Web 43

Pants Documentation, Release 1.0.1

@app.route("/page/<path:slug=welcome>")

Default values are used if there is no string to capture for the variable in question, and are processed via the converter’s
decode() method each time the rule is matched.

When using default values, they allow you to omit the entirety of the URL following the point at which they are used.
As such, if you have a rule such as /page/<int:id=2>/other, the URL /page/ will match it.

Domains

The route rule strings are very similar to those used by the popular Flask framework. However, in addition to that
behavior, the Application allows you to match and extract variables from the domain the page was requested from.

@app.route("<username>.my-site.com/blog/<int:year>/<slug>")

To use domains, simply place the domain before the first slash in the route rule.

Rule Variable Converters

Converters are all subclasses of Converter that have been registered with Pants using the
register_converter() decorator.

A Converter has three uses:

1. Generating a regular expression snippet that will match only valid input for the variable in question.

2. Processing the captured string into useful data for the Application.

3. Encoding values into URL-friendly strings for inclusion into URLs generated via the url_for() method.

Converters can accept configuration information from rules using a basic format.

@app.route("/page/<regex('(\d{3}-\d{4})'):number>")

@app.route("/user/<id(digits=4 min=200):id>")

Configuration must be provided within parenthesis, with separate values separated by simple spaces. Strings may be
enclosed within quotation marks if they need to contain spaces.

The values true, false, and none are converted to the appropriate Python values before being passed to the
Converter’s configuration method and it also attempts to convert values into integers or floats if possible. Use quotation
marks to avoid this behavior if required.

Arguments may be passed by order or by key, and are passed to the Converter’s configure() method from the
constructor via: self.configure(*args, **kwargs)

Several basic converters have been included by default to make things easier.

Any

The any converter will allow you to match one string from a list of possible strings.

@app.route("/<any(call text im):action>/<int:id>")

Using the above rule, you can match URLs starting with /call/, /text/, or /im/ (and followed, of course, by an
integer named id).

44 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

DomainPart

DomainPart is a special converter used when matching sections of a domain name that will not match a period (.) but
that otherwise works identically to the default String converter.

You do not have to specify the DomainPart converter. It will be used automatically in place of String for any variable
capture within the domain name portion of the rule.

Float

The float converter will match a negation, the digits 0 through 9, and a single period. It automatically converts the
captured string into a floating point number.

Argument Default Description
min None The minimum value to allow.
max None The maximum value to allow.

Values outside of the range defined by min and max will result in an error and not merely the rule not matching the
URL.

Integer

The int (or integer) converter will match a negation and the digits 0 through 9, automatically converting the
captured string into an integer.

Argument Default Description
digits None The exact number of digits to match with this variable.
min None The minimum value to allow.
max None The maximum value to allow.

As with the Float converter, values outside of the range defined by min and max will result in an error and not merely
the rule not matching the URL.

Path

The path converter will match any character at all and merely returns the captured string. This is useful as a catch all
for placing on the end of URLs.

Regex

The regex converter allows you to specify an arbitrary regular expression snippet for inclusion into the rule’s final
expression.

Argument Default Description
match A regular expression snippet for inclusion into the rule’s final expression.
namegen None The string format to use when building a URL for this variable with url_for().

@app.route("/call/<regex('(\d{3}-\d{4})'):number>")

The above variable would match strings such as 555-1234.

1.3. HTTP & Web 45

Pants Documentation, Release 1.0.1

String

The string converter is the default converter used when none is specified, and it matches any character except for a
slash (/), allowing it to easily capture individual URL segments.

Argument Default Description
min None The minimum length of the string to capture.
max None The maximum length of the string to capture.
length None An easy way to set both min and max at once.

Note: Setting length overrides any value of min and max.

Writing a Variable Converter

To create your own variable converters, you must create subclasses of Converter and register it with Pants using
the decorator register_converter().

The simplest way to use converters is as a way to store common regular expressions that you use to match segments
of a URL. If, for example, you need to match basic phone numbers, you could use:

@app.route("/tel/<regex('(\d{3})-(\d{4})'):number>")

Placing the expression in the route isn’t clean, however, and it can be a pain to update–particularly if you use the same
expression across many different routes.

A better alternative is to use a custom converter:

from pants.web import Converter, register_converter

@register_converter
class Telephone(Converter):

regex = r"(\d{3})-(\d{4})"

After doing that, your rule becomes as easy as /tel/<telephone:number>. Of course, you could stop there,
and deal with the resulting tuple of two strings within your request handler.

However, the main goal of converters is to convert your data. Let’s store our phone number in a collections.
namedtuple. While we’re at it, we’ll switch to a slightly more complex regular expression that can capture area
codes and extensions as well.

from collections import namedtuple
from pants.web import Converter, register_converter

PhoneNumber = namedtuple('PhoneNumber', ['npa','nxx','subscriber', 'ext'])

@register_converter
class Telephone(Converter):

regex = r"(?:1[-]*)?(?:\(? *([2-9][0-9]{2}) *\)?[-]*)?([2-9](?:1[02-9]|[02-9][0-
→˓9]))[-]*(\d{4})(?:[-]*e?xt?[-]*(\d+))?"

def decode(self, request, *values):
return PhoneNumber(*(int(x) if x else None for x in values))

Now we’re getting somewhere. Using our existing rule, now we can make a request for the URL /tel/
555-234-5678x115 and our request handler will receive the variable PhoneNumber(npa=555, nxx=234,
subscriber=5678, ext=115).

46 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

Lastly, we need a way to convert our nice PhoneNumber instances into something we can place in a URL, for use
with the url_for() function:

@register_converter
class Telephone(Converter):

...

def encode(self, request, value):
out = '%03d-%03d-%04d' % (value.npa, value.nxx, value.subscriber)
if value.ext:

out += '-ext%d' % value.ext
return out

Now, we can use url_for('route', PhoneNumber(npa=555, nxx=234, subscriber=5678,
ext=115)) and get a nice and readable /tel/555-234-5678-ext115 back (assuming the rule for route
is /tel/<telephone:number>).

Output Handling

Sending output from a request handler is as easy as returning a value from the function. Strings work well:

@app.route("/")
def index(request):

return "Hello, World!"

The example above would result in a 200 OK response with the headers Content-Type: text/plain and
Content-Length: 13.

Response Body

If the returned string begins with <!DOCTYPE or <html it will be assumed that the Content-Type should be
text/html if a content type is not provided.

If a unicode string is returned, rather than a byte string, it will be encoded automatically using the encoding specified
in the Content-Type header. If that header is missing, or does not contain an encoding, the document will be
encoded in UTF-8 by default and the content type header will be updated.

Dictionaries, lists, and tuples will be automatically converted into JSON and the Content-Type header will be set
to application/json, making it easy to send JSON to clients.

If any other object is returned, the Application will attempt to cast it into a byte string using str(object). To
provide custom behavior, an object may be given a to_html method, which will be called rather than str(). If
to_html is used, the Content-Type will be assumed to be text/html.

Status and Headers

Of course, in any web application it is useful to be able to return custom status codes and HTTP headers. To do so from
an Application’s request handlers, simply return a tuple of (body, status) or (body, status, headers).

If provided, status must be an integer or a byte string. All valid HTTP response codes may be sent simply by using
their numbers.

If provided, headers must be either a dictionary, or a list of tuples containing key/value pairs ([(heading,
value), ...]).

1.3. HTTP & Web 47

http://en.wikipedia.org/wiki/JSON

Pants Documentation, Release 1.0.1

You may also use an instance of pants.web.application.Response rather than a simple body or tuple.

The following example returns a page with the status code 404 Not Found:

@app.route("/nowhere/")
def nowhere(request):

return "This does not exist.", 404

Helper Functions

pants.web.application.abort(status=404, message=None, headers=None)
Raise a HTTPException to display an error page.

pants.web.application.all_or_404(*args)
If any of the provided arguments aren’t truthy, raise a 404 Not Found exception. This is automatically called
for you if you set auto404=True when using the route decorator.

pants.web.application.error(message=None, status=None, headers=None, request=None, de-
bug=None)

Return a very simple error page, defaulting to a 404 Not Found error if no status code is supplied. Usually,
you’ll want to call abort() in your code, rather than error(). Usage:

return error(404)
return error("Some message.", 404)
return error("Blah blah blah.", 403, {'Some-Header': 'Fish'})

pants.web.application.redirect(url, status=302, request=None)
Construct a 302 Found response to instruct the client’s browser to redirect its request to a different URL.
Other codes may be returned by specifying a status.

Argument Default Description
url The URL to redirect the client’s browser to.
status 302 Optional. The status code to send with the response.

pants.web.application.register_converter(name=None, klass=None)
Register a converter with the given name. If a name is not provided, the class name will be converted to
lowercase and used instead.

pants.web.application.url_for(name, *values, **kw_values)
Generates a URL for the route with the given name. You may give either an absolute name for the route or use a
period to match names relative to the current route. Multiple periods may be used to traverse up the name tree.

Passed arguments will be used to construct the URL. Any unknown keyword arguments will be appended to the
URL as query arguments. Additionally, there are several special keyword arguments to customize url_for‘s
behavior.

Argu-
ment

De-
fault

Description

_anchor None Optional. An anchor string to be appended to the URL.
_doseq True Optional. The value to pass to urllib.urlencode()‘s doseq parameter for

building the query string.
_exter-
nal

False Optional. Whether or not a URL is meant for external use. External URLs never have
their host portion removed.

_scheme None Optional. The scheme of the link to generate. By default, this is set to the scheme of
the current request.

48 Chapter 1. Documentation

https://docs.python.org/2.7/library/urllib.html#urllib.urlencode

Pants Documentation, Release 1.0.1

Application

class pants.web.application.Application(name=None, debug=False, fix_end_slash=False)
The Application class builds upon the Module class and acts as a request handler for the HTTPServer, with
request routing, error handling, and a degree of convenience that makes sending output easier.

Instances of Application are callable, and should be used as a HTTPServer’s request handler.

Argu-
ment

Description

debug Optional. If this is set to True, the automatically generated 500 Internal Server Error
pages will display additional debugging information.

run(address=None, ssl_options=None, engine=None)
This function exists for convenience, and when called creates a HTTPServer instance with its request
handler set to this application instance, calls listen() on that HTTPServer, and finally, starts the Pants
engine to process requests.

Argu-
ment

Description

address Optional. The address to listen on. If this isn’t specified, it will default to ('', 80).
ssl_optionsOptional. A dictionary of SSL options for the server. See

pants.server.Server.startSSL() for more information.
engine Optional. The pants.engine.Engine instance to use.

Module

class pants.web.application.Module(name=None)
A Module is, essentially, a group of rules for an Application. Rules grouped into a Module can be created
without any access to the final Application instance, making it simple to split a website into multiple Python
modules to be imported in the module that creates and runs the application.

add(rule, module)
Add a Module to this Module under the given rule. All rules within the sub-module will be accessible to
this Module, with their rules prefixed by the rule provided here.

For example:

module_one = Module()

@module_one.route("/fish")
def fish(request):

return "This is fish."

module_two = Module()

module_two.add("/pie", module_one)

Given that code, the request handler fish would be available from the Module module_two with the
rules /pie/fish.

basic_route(rule, name=None, methods=(‘GET’, ‘HEAD’), headers=None, content_type=None,
func=None)

The basic_route decorator registers a route with the Module without holding your hand about it.

It functions similarly to the Module.route() decorator, but it doesn’t wrap the function with any
argument processing code. Instead, the function is given only the request object, and through it access to
the regular expression match.

1.3. HTTP & Web 49

Pants Documentation, Release 1.0.1

Example Usage:

@app.basic_route("/char/<char>")
def my_route(request):

char, = request.match.groups()
return "The character is %s!" % char

That is essentially equivalent to:

@app.route("/char/<char>")
def my_route(request, char):

return "The character is %s!" % char

Note: Output is still handled the way it is with a normal route, so you can return strings and dictionaries
as usual.

Argu-
ment

Description

rule The route rule to match for a request to go to the decorated function. See
Module.route() for more information.

name Optional. The name of the decorated function, for use with the url_for() helper
function.

meth-
ods

Optional. A list of HTTP methods to allow for this request handler. By default, only GET
and HEAD requests are allowed, and all others will result in a 405 Method Not
Allowed error.

head-
ers

Optional. A dictionary of HTTP headers to always send with the response from this request
handler. Any headers set within the request handler will override these headers.

con-
tent_type

Optional. The HTTP Content-Type header to send with the response from this request
handler. A Content-Type header set within the request handler will override this.

func Optional. The function for this view. Specifying the function bypasses the usual
decorator-like behavior of this function.

request_finished(func)
Register a method to be executed immediately after the request handler and before the output is processed
and send to the client.

This can be used to transform the output of request handlers.

Note: These hooks are not run if there is no matching rule for a request, if there is an exception while
running the request handler, or if the request is not set to have its output processed by the Application by
setting request.auto_finish to False.

request_started(func)
Register a method to be executed immediately after a request has been successfully routed and before the
request handler is executed.

Note: Hooks, including request_started, are not executed if there is no matching rule to handle the
request.

This can be used for the initialization of sessions, a database connection, or other details. However, it is not
always the best choice. If you wish to modify all requests, or manipulate the URL before routing occurs,

50 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

you should wrap the Application in another method, rather than using a request_started hook. As
an example of the difference:

from pants.web import Application
from pants.http import HTTPServer
from pants import Engine

from my_site import sessions, module

app = Application()

The Hook
@app.request_started
def handle(request):

logging.info('Request matched route: %s' % request.route_name)

The Wrapper
def wrapper(request):

request.session = sessions.get(request.get_secure_cookie('session_id'))
app(request)

Add rules from another module.
app.add('/', module)

HTTPServer(wrapper).listen()
Engine.instance().start()

request_teardown(func)
Register a method to be executed after the output of a request handler has been processed and has begun
being transmitted to the client. At this point, the request is not going to be used again and can be cleaned
up.

Note: These hooks will always run if there was a matching rule, even if the request handler or other hooks
have exceptions, to prevent any potential memory leaks from requests that aren’t torn down properly.

route(rule, name=None, methods=(‘GET’, ‘HEAD’), auto404=False, headers=None, con-
tent_type=None, func=None)

The route decorator is used to register a new route with the Module instance. Example:

@app.route("/")
def hello_world(request):

return "Hiya, Everyone!"

See also:

See Routing for more information on writing rules.

1.3. HTTP & Web 51

Pants Documentation, Release 1.0.1

Argu-
ment

Description

rule The route rule to be matched for the decorated function to be used for handling a request.
name Optional. The name of the decorated function, for use with the url_for() helper

function.
meth-
ods

Optional. A list of HTTP methods to allow for this request handler. By default, only GET
and HEAD requests are allowed, and all others will result in a 405 Method Not
Allowed error.

auto404 Optional. If this is set to True, all response handler arguments will be checked for truthiness
(True, non-empty strings, etc.) and, if any fail, a 404 Not Found page will be rendered
automatically.

head-
ers

Optional. A dictionary of HTTP headers to always send with the response from this request
handler. Any headers set within the request handler will override these headers.

con-
tent_type

Optional. The HTTP Content-Type header to send with the response from this request
handler. A Content-Type header set within the request handler will override this.

func Optional. The function for this view. Specifying the function bypasses the usual
decorator-like behavior of this function.

Converter

class pants.web.application.Converter(options, default)
The Converter class is the base class for all the different value converters usable in routing rules.

default
A string provided with the variable declaration to be used as a default value if no value is provided by the
client.

This value will also be placed in urls generated via the method url_for() if no other value is provided.

configure()
The method receives configuration data parsed from the rule creating this Converter instance as positional
and keyword arguments.

You must build a regular expression for matching acceptable input within this function, and save it as the
instance’s regex attribute. You may use more than one capture group.

decode(request, *values)
This method receives captured strings from URLs and must process the strings and return variables usable
within request handlers.

If the converter’s regular expression has multiple capture groups, it will receive multiple arguments.

Note: Use abort() or raise an HTTPException from this method if you wish to display an error
page. Any other uncaught exceptions will result in a 400 Bad Request page.

encode(request, value)
This method encodes a value into a URL-friendly string for inclusion into URLs generated with
url_for().

Exceptions

class pants.web.application.HTTPException(status=404, message=None, headers=None)
Raising an instance of HTTPException will cause the Application to render an error page out to the client with
the given HTTP status code, message, and any provided headers.

52 Chapter 1. Documentation

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Pants Documentation, Release 1.0.1

This is, generally, preferable to allowing an exception of a different type to bubble up to the Application, which
would result in a 500 Internal Server Error page.

The abort() helper function makes it easy to raise instances of this exception.

Argu-
ment

Description

status Optional. The HTTP status code to generate an error page for. If this isn’t specified, a 404 Not
Found page will be generated.

mes-
sage

Optional. A text message to display on the error page.

headers Optional. A dict of extra HTTP headers to return with the rendered page.

class pants.web.application.HTTPTransparentRedirect(url)
Raising an instance of HTTPTransparentRedirect will cause the Application to silently redirect a request to a
new URL.

1.3.5 pants.web.fileserver

pants.web.fileserver implements a basic static file server for use with a HTTPServer or Application.
It makes use of the appropriate HTTP headers and the sendfile system call, as well as the X-Sendfile header
to improve transfer performance.

Serving Static Files

The pants.web.fileserver module can be invoked directly using the -m switch of the interpreter to serve files
in a similar way to the standard library’s SimpleHTTPServer. However, it performs much more efficiently than
SimpleHTTPServer for this task.

$ python -m pants.web.fileserver

When doing this, you may use additional arguments to specify which address the server should bind to, as well as
which filenames should serve as directory indices. By default, only index.html and index.htm are served as
indices.

FileServer

class pants.web.fileserver.FileServer(path, blacklist=(<_sre.SRE_Pattern object>,), de-
faults=(‘index.html’, ‘index.htm’))

The FileServer is a request handling class that, as it sounds, serves files to the client using pants.http.
server.HTTPRequest.send_file(). As such, it supports caching headers, as well as X-Sendfile if
the HTTPServer instance is configured to use the Sendfile header. FileServer is also able to take advantage of
the sendfile system call to improve performance when X-Sendfile is not in use.

Ar-
gu-
ment

Default Description

path The path to serve.
black-
list

.py and

.pyc files
Optional. A list of regular expressions to test filenames against. If a given file
matches any of the provided patterns, it will not be downloadable and instead
return a 403 Unauthorized error.

de-
fault

index.
html,
index.htm

Optional. A list of default files to be displayed rather than a directory listing if
they exist.

1.3. HTTP & Web 53

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://docs.python.org/2.7/library/simplehttpserver.html#module-SimpleHTTPServer

Pants Documentation, Release 1.0.1

Using it is simple. It only requires a single argument: the path to serve files from. You can also supply a list of
default files to check to serve rather than a file listing.

When used with an Application, the FileServer is not created in the usual way with the route decorator, but
rather with a method of the FileServer itself. Example:

FileServer("/tmp/path").attach(app)

If you wish to listen on a path other than /static/, you can also use that when attaching:

FileServer("/tmp/path").attach(app, "/files/")

attach(app, path=’/static/’)
Attach this FileServer to an Application, bypassing the usual route decorator to ensure the rule is
configured as FileServer expects.

Argument Default Description
app The Application instance to attach to.
rule '/static/' Optional. The path to serve requests from.

1.3.6 pants.web.wsgi

pants.web.wsgi implements a WSGI compatibility class that lets you run WSGI applications using the Pants
HTTPServer.

Currently, this module uses the PEP 333 standard. Future releases will add support for PEP 3333, as well as the
ability to host a Pants Application from a standard WSGI server.

WSGIConnector

class pants.web.wsgi.WSGIConnector(application, debug=False)
This class functions as a request handler for the Pants HTTPServer that wraps WSGI applications to allow
them to work correctly.

Class instances are callable, and when called with a HTTPRequest instance, they construct a WSGI environ-
ment and invoke the application.

from pants import Engine
from pants.http import HTTPServer
from pants.web import WSGIConnector

def hello_app(environ, start_response):
start_response("200 OK", {"Content-Type": "text/plain"})
return ["Hello, World!"]

connector = WSGIConnector(hello_app)
HTTPServer(connector).listen()
Engine.instance().start()

WSGIConnector supports sending responses with Transfer-Encoding: chunked and will do so
automatically when the WSGI application’s response does not contain information about the response’s length.

54 Chapter 1. Documentation

https://www.python.org/dev/peps/pep-0333
https://www.python.org/dev/peps/pep-3333

Pants Documentation, Release 1.0.1

Argu-
ment

Description

appli-
cation

The WSGI application that will handle incoming requests.

debug Optional. Whether or not to display tracebacks and additional debugging information for a
request within 500 Internal Server Error pages.

attach(application, rule, methods=(‘HEAD’, ‘GET’, ‘POST’, ‘PUT’))
Attach the WSGIConnector to an instance of Application at the given route.

You may use route variables to strip information out of a URL. In the event that variables exist, they will
be made available within the WSGI environment under the key wsgiorg.routing_args

Warning: When using WSGIConnector within an Application, WSGIConnector expects the final
variable in the rule to capture the remainder of the URL, and it treats the last variable as containing
the value for the PATH_INFO variable in the WSGI environment. This method adds such a variable
automatically. However, if you add the WSGIConnector manually you will have to be prepared.

Argument Description
application The Application to attach to.
rule The path to serve requests from.
methods Optional. The HTTP methods to accept.

1.4 Contributions

1.4.1 pants.contrib.irc

BaseIRC

class pants.contrib.irc.BaseIRC(encoding=’utf-8’, **kwargs)
The IRC protocol, implemented over a Pants Stream.

The goal with this is to create a lightweight IRC class that can serve as either a server or a client. As such, it
doesn’t implement a lot of logic in favor of providing a robust base.

The BaseIRC class can receive and send IRC commands, and automatically respond to certain commands such
as PING.

This class extends Stream, and as such has the same connect() and listen() functions.

irc_close()
Placeholder.

This method is called whenever the IRC instance becomes disconnected from the remote client or server.

irc_command(command, args, nick, user, host)
Placeholder.

This method is called whenever a command is received from the other side and successfully parsed as an
IRC command.

1.4. Contributions 55

http://wsgi.readthedocs.org/en/latest/specifications/routing_args.html

Pants Documentation, Release 1.0.1

Argu-
ment

Description

com-
mand

The received command.

args A list of the arguments following the command.
nick The nick of the user that sent the command, if applicable, or an empty string.
user The username of the user that sent the command, if applicable, or an empty string.
host The host of the user that sent the command, the host of the server that sent the command, or

an empty string if no host was supplied.

irc_connect()
Placeholder.

This method is called when the IRC instance has successfully connected to the remote client or server.

message(destination, message, _ctcpQuote=True, _prefix=None)
Send a message to the given nick or channel.

Argu-
ment

De-
fault

Description

destina-
tion

The nick or channel to send the message to.

message The text of the message to be sent.
_ctcpQuote True Optional. If True, the message text will be quoted for CTCP before being sent.
_prefix None Optional. A string that, if provided, will be prepended to the command string

before it’s sent to the server.

notice(destination, message, _ctcpQuote=True, _prefix=None)
Send a NOTICE to the specified destination.

Argu-
ment

De-
fault

Description

destina-
tion

The nick or channel to send the NOTICE to.

message The text of the NOTICE to be sent.
_ctcpQuote True Optional. If True, the message text will be quoted for CTCP before being sent.
_prefix None Optional. A string that, if provided, will be prepended to the command string

before it’s sent to the server.

quit(reason=None, _prefix=None)
Send a QUIT message, with an optional reason.

Argu-
ment

De-
fault

Description

reason None Optional. The reason for quitting that will be displayed to other users.
_prefix None Optional. A string that, if provided, will be prepended to the command string

before it’s sent to the server.

send_command(command, *args, **kwargs)
Send a command to the remote endpoint.

Argu-
ment

De-
fault

Description

com-
mand

The command to send.

*args Optional. A list of arguments to send with the command.
_prefix None Optional. A string that, if provided, will be prepended to the command string

before it’s sent to the server.

56 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

Channel

class pants.contrib.irc.Channel(name)
An IRC channel’s representation, for keeping track of users and the topic and stuff.

IRCClient

class pants.contrib.irc.IRCClient(encoding=’utf-8’, **kwargs)
An IRC client, written in Pants, based on BaseIRC.

This implements rather more logic, and keeps track of what server it’s connected to, its nick, and what channels
it’s in.

channel(name)
Retrieve a Channel object for the channel name, or None if we’re not in that channel.

connect(server=None, port=None)
Connect to the server.

Argument Description
server The host to connect to.
port The port to connect to on the remote server.

irc_ctcp(nick, message, user, host)
Placeholder.

This method is called when the bot receives a CTCP message, which could, in theory, be anywhere in a
PRIVMSG... annoyingly enough.

Argu-
ment

Description

nick The nick of the user that sent the CTCP message, or an empty string if no nick is
available.

message The full CTCP message.
user The username of the user that sent the CTCP message, or an empty string if no username

is available.
host The host of the user that sent the CTCP message, or an empty string if no host is available.

irc_join(channel, nick, user, host)
Placeholder.

This method is called when a user enters a channel. That also means that this function is called whenever
this IRC client successfully joins a channel.

Argument Description
channel The channel a user has joined.
nick The nick of the user that joined the channel.
user The username of the user that joined the channel.
host The host of the user that joined the channel.

irc_message_channel(channel, message, nick, user, host)
Placeholder.

This method is called when the client receives a message from a channel.

1.4. Contributions 57

Pants Documentation, Release 1.0.1

Argument Description
channel The channel the message was received in.
message The text of the message.
nick The nick of the user that sent the message.
user The username of the user that sent the message.
host The host of the user that sent the message.

irc_message_private(nick, message, user, host)
Placeholder.

This method is called when the client receives a message from a user.

Argument Description
nick The nick of the user that sent the message.
message The text of the message.
user The username of the user that sent the message.
host The host of the user that sent the message.

irc_nick_changed(nick)
Placeholder.

This method is called when the client’s nick on the network is changed for any reason.

Argument Description
nick The client’s new nick.

irc_part(channel, reason, nick, user, host)
Placeholder.

This method is called when a leaves enters a channel. That also means that this function is called whenever
this IRC client leaves a channel.

Argument Description
channel The channel that the user has left.
reason The provided reason message, or an empty string if there is no message.
nick The nick of the user that left the channel.
user The username of the user that left the channel.
host The host of the user that left the channel.

irc_topic_changed(channel, topic)
Placeholder.

This method is called when the topic of a channel changes.

Argument Description
channel The channel which had its topic changed.
topic The channel’s new topic.

join(channel)
Join the specified channel.

Argument Description
channel The name of the channel to join.

nick
This instance’s current nickname on the server it’s connected to, or the nickname it will attempt to acquire
when connecting.

part(channel, reason=None, force=False)
Leave the specified channel.

58 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

Argu-
ment

De-
fault

Description

channel The channel to leave.
reason None Optional. The reason why.
force False Optional. Don’t ensure the client is actually in the named channel before

sending PART.

port
The port this instance is connected to on the remote server, or the port it will attempt to connect to.

realname
The real name this instance will report to the server when connecting.

server
The server this instance is connected to, or will attempt to connect to.

user
The user name this instance will report to the server when connecting.

Helper Functions

pants.contrib.irc.ctcpQuote(message)
Low-level quote a message, adhering to the CTCP guidelines.

pants.contrib.irc.ctcpUnquote(message)
Low-level unquote a message, adhering to the CTCP guidelines.

1.4.2 pants.contrib.qt

Installation

pants.contrib.qt.install(app=None, timeout=0.02, engine=None)
Creates a QTimer instance that will be triggered continuously to call Engine.poll(), ensuring that Pants
remains responsive.

Ar-
gu-
ment

De-
fault

Description

app None Optional. The QCoreApplication to attach to. If no application is provided, it will
attempt to find an existing application in memory, or, failing that, create a new application
instance.

time-
out

0.
02

Optional. The maximum time to wait, in seconds, before running Engine.poll().

en-
gine

Optional. The pants.engine.Engine instance to use.

1.4. Contributions 59

http://srinikom.github.io/pyside-docs/PySide/QtCore/QTimer.html#PySide.QtCore.QTimer
http://srinikom.github.io/pyside-docs/PySide/QtCore/QCoreApplication.html#PySide.QtCore.QCoreApplication

Pants Documentation, Release 1.0.1

1.4.3 pants.contrib.telnet

Constants

Telnet Commands

Constant Value
IAC '\xFF'
DONT '\xFE'
DO '\xFD'
WONT '\xFC'
WILL '\xFB'
SB '\xFA'
SE '\xF0'

TelnetConnection

class pants.contrib.telnet.TelnetConnection(**kwargs)
A basic implementation of a Telnet connection.

A TelnetConnection object is capable of identifying and extracting Telnet command sequences from incoming
data. Upon identifying a Telnet command, option or subnegotiation, the connection will call a relevant place-
holder method. This class should be subclassed to provide functionality for individual commands and options.

close(flush=True)
Close the channel.

on_close()
Placeholder. Called after the channel has finished closing.

on_command(command)
Placeholder. Called when the connection receives a telnet command, such as AYT (Are You There).

Argument Description
command The byte representing the telnet command.

on_connect()
Placeholder. Called after the channel has connected to a remote socket.

on_option(command, option)
Placeholder. Called when the connection receives a telnet option negotiation sequence, such as IAC WILL
ECHO.

Argument Description
command The byte representing the telnet command.
option The byte representing the telnet option being negotiated.

on_read(data)
Placeholder. Called when data is read from the channel.

Argument Description
data A chunk of data received from the socket.

on_subnegotiation(option, data)
Placeholder. Called when the connection receives a subnegotiation sequence.

Argument Description
option The byte representing the telnet option for which subnegotiation data has been received.
data The received data.

60 Chapter 1. Documentation

Pants Documentation, Release 1.0.1

on_write()
Placeholder. Called after the channel has finished writing data.

write(data, flush=False)
Write data to the channel.

Data will not be written immediately, but will be buffered internally until it can be sent without blocking
the process.

Calling write() on a closed or disconnected channel will raise a RuntimeError.

Arguments Description
data A string of data to write to the channel.
flush Optional. If True, flush the internal write buffer. See flush() for details.

write_file(sfile, nbytes=0, offset=0, flush=False)
Write a file to the channel.

The file will not be written immediately, but will be buffered internally until it can be sent without blocking
the process.

Calling write_file() on a closed or disconnected channel will raise a RuntimeError.

Arguments Description
sfile A file object to write to the channel.
nbytes Optional. The number of bytes of the file to write. If 0, all bytes will be written.
offset Optional. The number of bytes to offset writing by.
flush Optional. If True, flush the internal write buffer. See flush() for details.

TelnetServer

class pants.contrib.telnet.TelnetServer(ConnectionClass=None, **kwargs)
A basic implementation of a Telnet server.

1.4. Contributions 61

Pants Documentation, Release 1.0.1

62 Chapter 1. Documentation

Python Module Index

p
pants, 7
pants.contrib.irc, 55
pants.contrib.qt, 59
pants.contrib.telnet, 60
pants.engine, 7
pants.http.client, 25
pants.http.server, 18
pants.http.websocket, 33
pants.server, 15
pants.stream, 9
pants.web.application, 42
pants.web.fileserver, 53
pants.web.wsgi, 54

63

Pants Documentation, Release 1.0.1

64 Python Module Index

Index

A
abort() (in module pants.web.application), 48
add() (pants.web.application.Module method), 49
all_or_404() (in module pants.web.application), 48
allow_old_handshake (pants.http.websocket.WebSocket

attribute), 38
Application (class in pants.web.application), 49
attach() (pants.web.fileserver.FileServer method), 54
attach() (pants.web.wsgi.WSGIConnector method), 55
auth (pants.http.client.HTTPRequest attribute), 30

B
BaseIRC (class in pants.contrib.irc), 55
basic_route() (pants.web.application.Module method), 49
body (pants.http.client.HTTPRequest attribute), 30
body (pants.http.server.HTTPRequest attribute), 22
buffer_size (pants.http.websocket.WebSocket attribute),

38
buffer_size (pants.stream.Stream attribute), 11

C
callback() (pants.engine.Engine method), 8
CertificateError (class in pants.http.client), 28
Channel (class in pants.contrib.irc), 57
channel() (pants.contrib.irc.IRCClient method), 57
client (pants.http.client.Session attribute), 32
close() (pants.contrib.telnet.TelnetConnection method),

60
close() (pants.http.websocket.WebSocket method), 38
close() (pants.server.Server method), 16
close() (pants.stream.Stream method), 11
configure() (pants.web.application.Converter method), 52
connect() (pants.contrib.irc.IRCClient method), 57
connect() (pants.stream.Stream method), 11
connection (pants.http.server.HTTPRequest attribute), 22
content (pants.http.client.HTTPResponse attribute), 31
Converter (class in pants.web.application), 52
cookies (pants.http.client.HTTPRequest attribute), 30
cookies (pants.http.client.HTTPResponse attribute), 31

cookies (pants.http.server.HTTPRequest attribute), 22
cookies_out (pants.http.server.HTTPRequest attribute),

23
ctcpQuote() (in module pants.contrib.irc), 59
ctcpUnquote() (in module pants.contrib.irc), 59
current_request (pants.http.server.HTTPConnection at-

tribute), 21
cycle() (pants.engine.Engine method), 8

D
decode() (pants.web.application.Converter method), 52
default (pants.web.application.Converter attribute), 52
defer() (pants.engine.Engine method), 8
delete() (pants.http.client.HTTPClient method), 29
delete() (pants.http.client.Session method), 32

E
encode() (pants.web.application.Converter method), 52
encoding (pants.http.client.HTTPResponse attribute), 31
Engine (class in pants.engine), 8
EntireMessage (in module pants.http.websocket), 42
error() (in module pants.web.application), 48

F
file (pants.http.client.HTTPResponse attribute), 31
files (pants.http.server.HTTPRequest attribute), 22
FileServer (class in pants.web.fileserver), 53
finish() (pants.http.server.HTTPConnection method), 21
finish() (pants.http.server.HTTPRequest method), 23
flush() (pants.stream.Stream method), 12
fragment (pants.http.server.HTTPRequest attribute), 21
full_url (pants.http.server.HTTPRequest attribute), 23

G
get (pants.http.server.HTTPRequest attribute), 22
get() (pants.http.client.HTTPClient method), 29
get() (pants.http.client.Session method), 32
get_secure_cookie() (pants.http.server.HTTPRequest

method), 23

65

Pants Documentation, Release 1.0.1

H
handle_301() (pants.http.client.HTTPResponse method),

31
handle_401() (pants.http.client.HTTPResponse method),

31
head() (pants.http.client.HTTPClient method), 29
head() (pants.http.client.Session method), 33
headers (pants.http.client.HTTPRequest attribute), 30
headers (pants.http.client.HTTPResponse attribute), 31
headers (pants.http.server.HTTPRequest attribute), 21
host (pants.http.server.HTTPRequest attribute), 22
hostname (pants.http.server.HTTPRequest attribute), 22
http_version (pants.http.client.HTTPResponse attribute),

31
HTTPClient (class in pants.http.client), 28
HTTPClientException (class in pants.http.client), 28
HTTPConnection (class in pants.http.server), 21
HTTPException (class in pants.web.application), 52
HTTPRequest (class in pants.http.client), 30
HTTPRequest (class in pants.http.server), 21
HTTPResponse (class in pants.http.client), 31
HTTPServer (class in pants.http.server), 20
HTTPTransparentRedirect (class in

pants.web.application), 53

I
install() (in module pants.contrib.qt), 59
instance() (pants.engine.Engine class method), 9
irc_close() (pants.contrib.irc.BaseIRC method), 55
irc_command() (pants.contrib.irc.BaseIRC method), 55
irc_connect() (pants.contrib.irc.BaseIRC method), 56
irc_ctcp() (pants.contrib.irc.IRCClient method), 57
irc_join() (pants.contrib.irc.IRCClient method), 57
irc_message_channel() (pants.contrib.irc.IRCClient

method), 57
irc_message_private() (pants.contrib.irc.IRCClient

method), 58
irc_nick_changed() (pants.contrib.irc.IRCClient method),

58
irc_part() (pants.contrib.irc.IRCClient method), 58
irc_topic_changed() (pants.contrib.irc.IRCClient

method), 58
IRCClient (class in pants.contrib.irc), 57
is_secure (pants.http.server.HTTPRequest attribute), 23
is_secure (pants.http.websocket.WebSocket attribute), 38
iter_content() (pants.http.client.HTTPResponse method),

31
iter_lines() (pants.http.client.HTTPResponse method), 31

J
join() (pants.contrib.irc.IRCClient method), 58
json() (pants.http.client.HTTPResponse method), 32

K
keep_alive (pants.http.client.HTTPRequest attribute), 30

L
length (pants.http.client.HTTPResponse attribute), 31
listen() (pants.http.server.HTTPServer method), 20
listen() (pants.server.Server method), 17
local_address (pants.http.websocket.WebSocket at-

tribute), 39
local_address (pants.stream.Stream attribute), 12
loop() (pants.engine.Engine method), 9

M
MalformedResponse (class in pants.http.client), 28
max_redirects (pants.http.client.HTTPRequest attribute),

30
message() (pants.contrib.irc.BaseIRC method), 56
method (pants.http.client.HTTPRequest attribute), 30
method (pants.http.server.HTTPRequest attribute), 21
Module (class in pants.web.application), 49

N
nick (pants.contrib.irc.IRCClient attribute), 58
notice() (pants.contrib.irc.BaseIRC method), 56

O
on_accept() (pants.server.Server method), 17
on_close() (pants.contrib.telnet.TelnetConnection

method), 60
on_close() (pants.http.websocket.WebSocket method), 39
on_close() (pants.server.Server method), 17
on_close() (pants.stream.Stream method), 12
on_command() (pants.contrib.telnet.TelnetConnection

method), 60
on_connect() (pants.contrib.telnet.TelnetConnection

method), 60
on_connect() (pants.http.websocket.WebSocket method),

39
on_connect() (pants.stream.Stream method), 12
on_connect_error() (pants.stream.Stream method), 12
on_error() (pants.http.client.HTTPClient method), 29
on_error() (pants.server.Server method), 17
on_error() (pants.stream.Stream method), 12
on_handshake() (pants.http.websocket.WebSocket

method), 39
on_headers() (pants.http.client.HTTPClient method), 29
on_listen() (pants.server.Server method), 17
on_option() (pants.contrib.telnet.TelnetConnection

method), 60
on_overflow_error() (pants.http.websocket.WebSocket

method), 39
on_overflow_error() (pants.stream.Stream method), 12
on_pong() (pants.http.websocket.WebSocket method), 39

66 Index

Pants Documentation, Release 1.0.1

on_progress() (pants.http.client.HTTPClient method), 29
on_read() (pants.contrib.telnet.TelnetConnection

method), 60
on_read() (pants.http.websocket.WebSocket method), 40
on_read() (pants.stream.Stream method), 12
on_response() (pants.http.client.HTTPClient method), 29
on_ssl_error() (pants.http.client.HTTPClient method), 29
on_ssl_error() (pants.stream.Stream method), 13
on_ssl_handshake() (pants.stream.Stream method), 13
on_ssl_handshake_error() (pants.stream.Stream method),

13
on_ssl_wrap_error() (pants.server.Server method), 17
on_subnegotiation() (pants.contrib.telnet.TelnetConnection

method), 60
on_write() (pants.contrib.telnet.TelnetConnection

method), 60
on_write() (pants.http.websocket.WebSocket method), 40
on_write() (pants.stream.Stream method), 13
options() (pants.http.client.HTTPClient method), 29
options() (pants.http.client.Session method), 33

P
pants (module), 7
pants.contrib.irc (module), 55
pants.contrib.qt (module), 59
pants.contrib.telnet (module), 60
pants.engine (module), 7
pants.http.client (module), 25
pants.http.server (module), 18
pants.http.websocket (module), 33
pants.server (module), 15
pants.stream (module), 9
pants.web.application (module), 42
pants.web.fileserver (module), 53
pants.web.wsgi (module), 54
part() (pants.contrib.irc.IRCClient method), 58
patch() (pants.http.client.HTTPClient method), 30
patch() (pants.http.client.Session method), 33
path (pants.http.client.HTTPRequest attribute), 30
path (pants.http.server.HTTPRequest attribute), 21
ping() (pants.http.websocket.WebSocket method), 40
poll() (pants.engine.Engine method), 9
port (pants.contrib.irc.IRCClient attribute), 59
post (pants.http.server.HTTPRequest attribute), 22
post() (pants.http.client.HTTPClient method), 30
post() (pants.http.client.Session method), 33
protocol (pants.http.server.HTTPRequest attribute), 21
put() (pants.http.client.HTTPClient method), 30
put() (pants.http.client.Session method), 33
Python Enhancement Proposals

PEP 333, 54
PEP 3333, 54

Q
query (pants.http.server.HTTPRequest attribute), 21
quit() (pants.contrib.irc.BaseIRC method), 56

R
read_delimiter (pants.http.websocket.WebSocket at-

tribute), 40
read_delimiter (pants.stream.Stream attribute), 13
realname (pants.contrib.irc.IRCClient attribute), 59
redirect() (in module pants.web.application), 48
register_converter() (in module pants.web.application),

48
remote_address (pants.http.websocket.WebSocket at-

tribute), 41
remote_address (pants.stream.Stream attribute), 14
remote_ip (pants.http.server.HTTPRequest attribute), 21
request() (pants.http.client.HTTPClient method), 30
request() (pants.http.client.Session method), 33
request_finished() (pants.web.application.Module

method), 50
request_started() (pants.web.application.Module

method), 50
request_teardown() (pants.web.application.Module

method), 51
RequestClosed (class in pants.http.client), 28
RequestTimedOut (class in pants.http.client), 28
response (pants.http.client.HTTPRequest attribute), 30
RFC

RFC 6455, 33
RFC 6455#section-7.4, 39

route() (pants.web.application.Module method), 51
run() (pants.web.application.Application method), 49

S
scheme (pants.http.server.HTTPRequest attribute), 21
send() (pants.http.server.HTTPRequest method), 23
send_command() (pants.contrib.irc.BaseIRC method), 56
send_cookies() (pants.http.server.HTTPRequest method),

23
send_file() (pants.http.server.HTTPRequest method), 23
send_headers() (pants.http.server.HTTPRequest method),

24
send_response() (pants.http.server.HTTPRequest

method), 24
send_status() (pants.http.server.HTTPRequest method),

24
Server (class in pants.server), 16
server (pants.contrib.irc.IRCClient attribute), 59
Session (class in pants.http.client), 32
session (pants.http.client.HTTPRequest attribute), 30
session() (pants.http.client.HTTPClient method), 30
session() (pants.http.client.Session method), 33
set_secure_cookie() (pants.http.server.HTTPRequest

method), 25

Index 67

Pants Documentation, Release 1.0.1

start() (pants.engine.Engine method), 9
startSSL() (pants.http.server.HTTPServer method), 20
startSSL() (pants.server.Server method), 18
startSSL() (pants.stream.Stream method), 14
status (pants.http.client.HTTPResponse attribute), 32
status_code (pants.http.client.HTTPResponse attribute),

31
status_text (pants.http.client.HTTPResponse attribute),

31
stop() (pants.engine.Engine method), 9
Stream (class in pants.stream), 11

T
TelnetConnection (class in pants.contrib.telnet), 60
TelnetServer (class in pants.contrib.telnet), 61
text (pants.http.client.HTTPResponse attribute), 32
time (pants.http.server.HTTPRequest attribute), 25
timeout (pants.http.client.HTTPRequest attribute), 30
trace() (pants.http.client.HTTPClient method), 30
trace() (pants.http.client.Session method), 33

U
url (pants.http.client.HTTPRequest attribute), 30
url (pants.http.server.HTTPRequest attribute), 21
url_for() (in module pants.web.application), 48
user (pants.contrib.irc.IRCClient attribute), 59

W
WebSocket (class in pants.http.websocket), 38
write() (pants.contrib.telnet.TelnetConnection method),

61
write() (pants.http.websocket.WebSocket method), 41
write() (pants.stream.Stream method), 14
write_file() (pants.contrib.telnet.TelnetConnection

method), 61
write_file() (pants.http.websocket.WebSocket method),

42
write_file() (pants.stream.Stream method), 15
write_packed() (pants.http.websocket.WebSocket

method), 42
write_packed() (pants.stream.Stream method), 15
WSGIConnector (class in pants.web.wsgi), 54

68 Index

	Documentation
	User Guide
	Core
	HTTP & Web
	Contributions

	Python Module Index

